Vol. 67
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-04-14
A Low-Cost Wideband Quasi-Yagi SIW-Based Textile Antenna
By
Progress In Electromagnetics Research Letters, Vol. 67, 53-59, 2017
Abstract
A low-cost wideband textile antenna based on the substrate integrated waveguide (SIW) technology is proposed, and a pure copper taffeta fabric etched on a woolen felt substrate is used to realize the presented antenna. The impedance matching frequency band for the designed structure is from 2.27 GHz to 3.61 GHz, which is significantly improved compared with previous studies. The operational principle of the proposedquasi-Yagi textile antenna is also described in this paper. The antenna is fabricated and measured, and a good agreement is achieved between the simulation and experimental results. The designed antenna has themaximum gain and efficiency of 4.2dB and 84%, respectively. According to its compactness, low-cost and low-weight specifications, the proposed antenna is a good candidate for being utilizedin wearable communication devices.
Citation
Mir Emad Lajevardi, and Manouchehr Kamyab, "A Low-Cost Wideband Quasi-Yagi SIW-Based Textile Antenna," Progress In Electromagnetics Research Letters, Vol. 67, 53-59, 2017.
doi:10.2528/PIERL17010403
References

1. Hall, P. S., et al. "Antennas and propagation for on-body communication systems," IEEE Antennas Propag. Mag., Vol. 49, No. 3, 4158, Jun. 2007.
doi:10.1109/MAP.2007.4293935

2. Hong, Y., J. Tak, and J. Choi, "An all textile SIW cavity-backed circular ring slot antenna for WBAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1995-1999, Apr. 2016.
doi:10.1109/LAWP.2016.2549578

3. Agneessens, S. and H. Rogier, "Compact half diamond dual-band textile HMSIW on-body antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2374-2381, May 2014.
doi:10.1109/TAP.2014.2308526

4. Castel, T., S. Lemey, P. Van Torre, C. Oestges, and H. Rogier, "Four-element ultra-wideband textile cross array for dual spatial and dual polarization diversity," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 481-484, June 2016.

5. Lemey, S. and H. Rogier, "SIW textile antennas as a novel technology for UWB RFID tags," RFID Technology and Applications Conference (RFID-TA), 256-260, Sept. 2014.

6. Caytan, O., S. Lemey, S. Agneessens, D. V. Ginste, P. Demeester, C. Loss, R. Salvado, and H. Rogier, "Half-mode substrate-integrated-waveguide cavity-backed slot antenna on cork substrate," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 162-165, May 2016.
doi:10.1109/LAWP.2015.2435891

7. Lemey, S., F. Declercq, and H. Rogier, "Dual-band substrate integrated waveguide textile antenna with integrated solar harvester," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 269-272, Jan. 2014.
doi:10.1109/LAWP.2014.2303573

8. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, 166-175, John Wiley & Sons, May 2012.

9. Declercq, F., H. Rogier, and C. Hertleer, "Permittivity and loss tangent characterization for garment antennas based on a new matrix-pencil two-line method," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2548-2554, Aug. 2008.
doi:10.1109/TAP.2008.927556

10., Computer Simulation Technology (CST), ver. 2016, [Online], Available: http://www.cst.com.

11. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Dual-band textile MIMO antenna based on substrate-integrated waveguide (SIW) technology," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 4640-4647, Nov. 2015.
doi:10.1109/TAP.2015.2477094