Vol. 64

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-12-12

Mechanically Tunable Wire Medium Metamaterial in the Millimeter Wave Band

By Liubov Ivzhenko, Eugene Odarenko, and Sergey I. Tarapov
Progress In Electromagnetics Research Letters, Vol. 64, 93-98, 2016
doi:10.2528/PIERL16090903

Abstract

The paper is devoted to experimental and theoretical study of spectra zone characteristics of the wire medium metamaterial with mechanically tunable unit cell. We experimentally demonstrated the effective control possibility of the spectral characteristics of wire medium metamaterial by varying its elementary unit-cell geometry. We established conditions under which the experimental implementation of the wire medium metamaterial at microwaves possesses the properties of a plasma-like medium and the properties band gap structure. A good agreement between the experiment and theory is demonstrated.

Citation


Liubov Ivzhenko, Eugene Odarenko, and Sergey I. Tarapov, "Mechanically Tunable Wire Medium Metamaterial in the Millimeter Wave Band," Progress In Electromagnetics Research Letters, Vol. 64, 93-98, 2016.
doi:10.2528/PIERL16090903
http://jpier.org/PIERL/pier.php?paper=16090903

References


    1. Brown, J., "Artificial dielectrics," Progress in Dielectrics, Vol. 2, 195-225, 1960.

    2. Nicorovichi, N. A., R. C. McPhedran, and L. C. Botten, "Photonic band gaps for arrays of perfectly conducting cylinders," Phys. Rev. E, Vol. 52, No. 1, 1135-1145, 1995.
    doi:10.1103/PhysRevE.52.1135

    3. Pendry, J. B., et al., "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.
    doi:10.1103/PhysRevLett.76.4773

    4. Boutayeb, H., A.-C. Tarot, and K. Mahdjoubi, "Focusing characteristics of a metallic cylindrical electromagnetic band gap structure with defects," Progress In Electromagnetics Research, Vol. 66, 89-103, 2006.
    doi:10.2528/PIER06100504

    5. Vasilantonakis, N., M. E. Nasir, W. Dickson, G. A. Wurtz, and A. V. Zayats, "Bulk plasmon-polaritons in hyperbolic nanorod metamaterial waveguides," Laser Photonics Rev., Vol. 9, No. 3, 345-353, 2015.
    doi:10.1002/lpor.201400457

    6. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
    doi:10.2528/PIER04070701

    7. Wu, D. M., et al., "Terahertz plasmonic high pass filter," Appl. Phys. Lett., Vol. 83, 201-203, 2003.
    doi:10.1063/1.1591083

    8. Belov, P. A., et al., "Image transmission with the subwavelength resolution in microwave, terahertz and optical frequency bands," J. Commun. Technol. Electron., Vol. 52, 1009, 2007.
    doi:10.1134/S1064226907090100

    9. Lourtioz, M., A. De Lustrac, F. Gadot, and D. Lippens, "Toward controllable photonic crystals for centimeter and millimeter wave devices," J. Lightwave Tech., Vol. 17, 2025-2031, 1999.
    doi:10.1109/50.802990

    10. Boutayeb, H., T. A. Denidni, A. R. Sebak, and L. Talbi, "Band structure analysis of crystals with discontinuous metallic wires," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 7, 2005.
    doi:10.1109/LMWC.2005.851579

    11. Belov, P. A. and C. R. Simovski, "Subwavelength metallic waveguides loaded by uniaxial resonant scatterers," Phys. Rev. E, Vol. 72, 036618, 2005.
    doi:10.1103/PhysRevE.72.036618

    12. Ikonen, P., et al., "Light-weight base station antenna with artificial wire medium lens," IEE Proc. Microwaves, Antennas and Propag., Vol. 153, No. 2, 163-170, 2006.
    doi:10.1049/ip-map:20050078

    13. Ikonen, P., P. Belov, C. Simovski, and S. Maslovsk, "Experimental demonstration of subwavelength field channeling at microwave frequencies using a capacitive loaded wire medium," Phys. Rev. B, Vol. 73, 073102, 2006.
    doi:10.1103/PhysRevB.73.073102

    14. Turpin, J. P., J. A. Bossard, K. L. Morgan, D. H. Werner, and P. L. Werner, "Reconfigurable and tunable metamaterials: A review of the theory and applications," International Journal of Antennas and Propagation, Vol. 2014, Article ID 429837.

    15. Li, J., C. M. Shah, W. Withayachumnankul, and D. Abbott, "Mechanically tunable terahertz metamaterials," Appl. Phys. Lett., Vol. 102, 121101, 2013.
    doi:10.1063/1.4773238

    16. Zhang, F., S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, "Mechanically stretchable and tunable metamaterial absorber," Appl. Phys. Lett., Vol. 106, 091907, 2015.
    doi:10.1063/1.4914502

    17. Shadrivov, I. V., D. A. Powell, S. K. Morrison, and Y. S. Kivshar, "Scattering of electromagnetic waves in metamaterial superlattices," Appl. Phys. Lett., Vol. 90, 201919, 2007.
    doi:10.1063/1.2741148

    18. Oskooi, A. F., D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, Vol. 181, 687-702, 2010.
    doi:10.1016/j.cpc.2009.11.008

    19. But’ko, L. N., A. P. Anzulevich, D. S. Liharev, and S. Moiseev, "Electrodynamics properties of media formed by regular lattices of conducting wires," CSU Bulletin, Physics, Vol. 16, No. 9, 11-17, 1996 (in Russian).