Vol. 63

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-09-29

A 2-4 GHz Octave Bandwidth GaN HEMT Power Amplifier with High Efficiency

By Hao Guo, Chun-Qing Chen, Hao-Quan Wang, and Ming-Li Hao
Progress In Electromagnetics Research Letters, Vol. 63, 7-14, 2016
doi:10.2528/PIERL16081801

Abstract

In this paper, a broadband power amplifier with high efficiency and output power based on GaN HEMT is presented. The design of broadband matching network and transistor package modeling is presented, and a simulation strategy is proposed to increase the simulation accuracy. According to measured results, the PA module shows a linear gain of 10~13 dB during 1.9-4 GHz. The efficiency can reach 74.5%, and the maximum output power reaches 33.2 Watt. For a 5-MHz WCDMA signal, the designed power amplifier achieves an average output power above 20 W when ACLR = -30 dBc over the entire working band.

Citation


Hao Guo, Chun-Qing Chen, Hao-Quan Wang, and Ming-Li Hao, "A 2-4 GHz Octave Bandwidth GaN HEMT Power Amplifier with High Efficiency," Progress In Electromagnetics Research Letters, Vol. 63, 7-14, 2016.
doi:10.2528/PIERL16081801
http://jpier.org/PIERL/pier.php?paper=16081801

References


    1. Raab, F. H., P. Asbeck, S. Cripps, P. B. Kenington, Z. B. Popovic, N. Pothecary, J. F. Sevic, and N. O. Sokal, "Power amplifiers and transmitters for RF and microwave," IEEE Trans. Microw. Theory Tech., Vol. 50, 814-826, 2002.
    doi:10.1109/22.989965

    2. Saphiro, E., J. Xu, A. Naga, F. Williams, U. Mishra, and R. York, "A high efficiency traveling-wave power amplifier topology using improved power-combining technique," IEEE Microw. Guided Wave Lett., Vol. 8, No. 3, 133-135, Mar. 1998.
    doi:10.1109/75.661139

    3. Gassmann, J., P. Watson, L. Kehias, and G. Henry, "Wideband, high-efficiency GaN power amplifiers utilizing a non-uniform distributed topology," IEEE MTT-S Int. Microw. Symp. Dig., 615-618, Jun. 2007.

    4. Kim, B. and H. Q. Tserng, "0.5 W 2-21 GHz monolithic GaAs distributed amplifier," Electronics Letters, Vol. 20, 288-289, Mar. 1984.
    doi:10.1049/el:19840197

    5. Chen, K. and D. Peroulis, "Design of highly efficient broadband class-E power amplifier using synthesized low-pass matching networks," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 12, 3162-3173, Dec. 2011.
    doi:10.1109/TMTT.2011.2169080

    6. Carrubba, V., J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, "A novel highly efficient broadband continuous class-F RFPA delivering 74% average efficiency for an octave bandwidth," IEEE MTT-S Int. Micro. Symp. Dig., 1-4, 2011.

    7. Chen, K. and D. Peroulis, "Design of broadband high-efficiency power amplifier using in-band class-F^(-1)/F mode transferring technique," IEEE MTT-S Int. Microw. Symp. Digest, 17-22, Montreal, QC, Canada, Jun. 2012.

    8. Wright, P., J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, "A methodology for realizing high efficiency class-J in a linear and broadband PA," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 12, 3196-3204, 2009.
    doi:10.1109/TMTT.2009.2033295

    9. Igi, S., M. Kobiki, T. Sakayori, M. Ohashi, M. Wataze, T. Suzuki, and K. Kusunoki, "Internally matched (IM) plated source bridge (PSB) power GaAs FET achieving a high performance power amplifier in X-band," IEEE MTT-S Int. Micro. Symp. Dig., 153-155, 1982.
    doi:10.1109/MWSYM.1982.1130644

    10. Aaen, P. A., J. A. Pla, and C. A. Balanis, "Modeling techniques suitable for CAD-based design of internal matching networks of high-power RF/microwave transistors," IEEE Trans. Microw. Theory Techn., Vol. 54, No. 7, 3052-3059, Jul. 2006.
    doi:10.1109/TMTT.2006.877033

    11. Aaen, P. H., J. A. Pla, and C. A. Balanis, "On the development of CAD techniques suitable for the design of high-power RF transistors," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 10, 3067-3074, Oct. 2005.
    doi:10.1109/TMTT.2005.855129

    12. Schnieder, F., O. Bengtsson, F.-J. Schmuckle, M. Rudolph, and W. Heinrich, "Simulation of RF power distribution in a packaged GaN power transistor using an electro-thermal large-signal description," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 7, 2603-2609, 2013.
    doi:10.1109/TMTT.2013.2261089

    13. Flucke, J., F.-J. Schmuckle, W. Heinrich, and M. Rudolph, "An accurate package model for 60 W GaN power transistors," Eur. Microw. Integr. Circuits Conf., 152-155, 2009.

    14. Dawson, D., "Closed-form solutions for the design of optimum matching networks," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 1, 121-129, Jan. 2009.
    doi:10.1109/TMTT.2008.2009041

    15. Rhea, R. W., HF Filter Design and Computer Simulation, Noble, New York, 1994.

    16. Saad, P., et al., "Design of a highly efficient 2-4 GHz octave bandwidth GaN-HEMT power amplifier," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 7, 1677-1685, 2010.
    doi:10.1109/TMTT.2010.2049770

    17. Canning, T., P. J. Tasker, and S. C. Cripps, "Continuous mode power amplifier design using harmonic clipping contours: Theory and practice," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 1, 100-110, 2014.
    doi:10.1109/TMTT.2013.2292675

    18. Dai, Z., et al., "A new distributed parameter broadband matching method for power amplifier via real frequency technique," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 2, 449-458, 2015.
    doi:10.1109/TMTT.2014.2385087