Vol. 63

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-09-29

Fast Design Technique for Lumped-Element Multilayered Bandpass Filters

By Ke Cao and Chong-Hu Cheng
Progress In Electromagnetics Research Letters, Vol. 63, 1-6, 2016
doi:10.2528/PIERL16072901

Abstract

A fast design technique for lumped-element multilayered bandpass filters is proposed. With this technique, the difference between multilayered component values and theoretical component values can be quickly estimated and tuned. The design procedure for filters can be obviously simplified, and the efficiency can be improved. This technique is discussed in detail, and mathematic explanation is given. An example is used to show the entire design procedure. The measurement result agrees well with the desired result, which shows the effectiveness of proposed technique.

Citation


Ke Cao and Chong-Hu Cheng, "Fast Design Technique for Lumped-Element Multilayered Bandpass Filters," Progress In Electromagnetics Research Letters, Vol. 63, 1-6, 2016.
doi:10.2528/PIERL16072901
http://jpier.org/PIERL/pier.php?paper=16072901

References


    1. Bandler, J. W., R. M. Biernacki, S. H. Chen, P. A. Grobelny, and R. H. Hemmers, "Space mapping technique for electromagnetic optimization," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 12, 2536-2544, 1994.
    doi:10.1109/22.339794

    2. Bandler, J. W., R. M. Biernacki, S. H. Chen, R. H. Hemmers, and K. Madsen, "Electromagnetic optimization exploiting aggressive space mapping," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 12, 2874-2882, 1995.
    doi:10.1109/22.475649

    3. Wu, K.-L., R. Zhang, M. Ehlert, and D.-G. Fang, "An explicit knowledge-embedded space mapping technique and its application to optimization of LTCC RF passive circuits," IEEE Trans. Compon. Packag. Manufact. Technol., Vol. 26, No. 2, 399-406, 2003.
    doi:10.1109/TCAPT.2003.815105

    4. Brzezina, G., L. Roy, and L. MacEachern, "Design enhancement of miniature lumped-element LTCC bandpass filters," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 4, 815-823, 2009.
    doi:10.1109/TMTT.2009.2015035

    5. Williams, A. B. and F. J. Taylor, Electronic Filter Design Handbook, McGraw-Hill, New York, 2006.

    6. Pozar, D. M., Microwave Engineering, John Wiley & Sons, New York, 2011.

    7. Saadi, A. A., M. C. E. Yagoub, R. Touhami, A. Slimane, A. Taibi, and M. T. Belaroussi, "Efficient UWB filter design technique for integrated passive device implementation," Electron. Lett., Vol. 51, No. 14, 1087-1089, 2015.
    doi:10.1049/el.2015.0588

    8. Oraizi, H. and M. S. Esfahlan, "Optimum design of lumped filters incorporating impedance matching by the method of least squares," Progress In Electromagnetics Research, Vol. 100, 83-103, 2010.
    doi:10.2528/PIER09111611

    9. Ma, K., L. Fan, and S. Zhang, "Compact multilayer self-packaged filter with surface-mounted packaging," Electron. Lett., Vol. 51, No. 5, 564-566, 2015.
    doi:10.1049/el.2014.4129

    10. Arabi, E. and A. Shamim, "3D lumped components and miniaturized bandpass filter in an ultra-thin M-LCP for SOP applications," Progress In Electromagnetics Research C, Vol. 44, 197-210, 2013.
    doi:10.2528/PIERC13090903

    11. Zhou, B., W. Sheng, and Y. Zheng, "Miniaturized lumped-element LTCC filter with spurious spikes suppressed vertically-interdigital-capacitors," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 10, 692-694, 2014.
    doi:10.1109/LMWC.2014.2342935

    12. Brzezina, G. and L. Roy, "Miniaturized, lumped-element filters for customized system-on-package L-band receivers," IEEE Trans. Compon. Packag. Manufact. Technol., Vol. 4, No. 1, 26-36, 2014.
    doi:10.1109/TCPMT.2013.2262637