Vol. 60
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-05-27
Characterisation of Copper Nanoparticle Ink Printed FSS for Cellular Signals Suppression
By
Progress In Electromagnetics Research Letters, Vol. 60, 101-106, 2016
Abstract
This paper proposes a copper nanoparticle inkprinted frequency selective surface (FSS) for cellular signals suppression. The FSS pattern is deposited on a polyimide film by using an inkjet printing technique. The printed FSS elements undergo the post-processing called sintering,where the optimum exposure duration and temperature are determined in order to form a conductive path across the metal pattern. Later, the conductivity of the printed FSS structure deposited on polyimide film is observed. The signal suppression ability of the printed FSS is conducted using the Computer Simulation Technology (CST) Microwave Studio software.
Citation
Fauziahanim Che Seman, Nur Khalida binti Abdul Khalid, and Suhana binti Mohd Said, "Characterisation of Copper Nanoparticle Ink Printed FSS for Cellular Signals Suppression," Progress In Electromagnetics Research Letters, Vol. 60, 101-106, 2016.
doi:10.2528/PIERL16030108
References

1. Zhou, Y., et al. "An overview on intercell interference management in mobile cellular networks from 2G to 5G," IEEE International Conference on Communication Systems (ICCS), 217-221, Nov. 19-21, 2014.

2. Mishra, N. K., "Development of GSM-900 mobile jammer: An approach to overcome existing limitation of jammer," 5th IEEE Conference on Wireless Communication and Sensor Networks (WCSN), 1-4, Dec. 15-19, 2009.

3. Pasian, M., et al. "Accurate modeling of dichroic mirrors in beam-waveguide antennas," IEEE Trans. Antennas and Propag., Vol. 61, No. 4, 1931-1938, Apr. 2013.
doi:10.1109/TAP.2012.2231928

4. Zhao, J. and X. Xu, "Study of the effect of a finite FSS radome on a horn antenna," IEEE International Conference on Microwave Technology and Computational Electromagnetics (ICMTCE), 74-76, 2011.

5. Sung, G. H. H., et al. "A frequency-selective wall for interference reduction in wireless indoor environments," IEEE Antennas and Propag. Mag., Vol. 48, No. 5, 29-37, 2006.
doi:10.1109/MAP.2006.277152

6. Parker, E. A., et al. "Frequency selectively screened office incorporating convoluted FSS window," Electron. Letters, Vol. 46, No. 5, 317-318, Mar. 2010.
doi:10.1049/el.2010.2530

7. Khalid, N. K. and F. C. Seman, "Characterisation of electrical conductivity of silver printed FSS for cellular signals suppression," 2015 IEEE International RF and Microwave Conference (RFM), Dec. 2015.

8. Khalid, N. K. and F. C. Seman, "Double square loop Frequency Selective Surface (FSS) for GSM shielding," International Conference on Communication and Computer Engineering (ICOCOE), Vol. 315, 223-229, May 2014.

9. "Malaysian communications and multimedia commission," Spectrum Allocation, [Online] Available: http://www.skmm.gov.my/Spectrum/Spectrum-Allocation-List/Spectrum-Allocation.aspx.

10. Jang, S., et al. "Sintering of inkjet printed copper nanoparticles for flexible electronics," Scripta Materialia, Vol. 62, 258-261, Mar. 2010.
doi:10.1016/j.scriptamat.2009.11.011

11. Halonen, E., et al. "The effect of laser sintering process parameters on Cu nanoparticle ink in room conditions," Optics and Photonics Journal, Vol. 3, 40-44, 2013.
doi:10.4236/opj.2013.34A007

12. Kim, J., et al. "Characterization of copper conductive ink for low temperature sintering processing on flexible polymer substrate," 16th IEEE Electronics Packaging Technology Conference (EPTC), 27-30, Dec. 2014.
doi:10.1109/EPTC.2014.7028308

13. Niittynen, J. and M. Mantysalo, "Characterization of laser sintering of copper nanoparticle ink by FEM and experimental testing," IEEE Trans. on Components, Packaging and Manufacturing Technology, Vol. 4, No. 12, 2018-2025, Dec. 2014.
doi:10.1109/TCPMT.2014.2363032

14. Kang, J. S., et al. "Inkjet printed electronics using copper nanoparticle ink," Journal of Materials Science: Materials in Electronics, 1213-1220, 2010.
doi:10.1007/s10854-009-0049-3

15. Niittynen, J., et al. "Comparison of laser and intense pulsed light sintering (IPL) for inkjet-printed copper nanoparticles layers," Scientific Reports, 2015.

16. Jun, S., et al. "3D printing technique for the development of non-planar electromagnetic bandgap structures for antenna applications," Electronics Letters, Vol. 52, No. 3, 175-176, Feb. 2016.
doi:10.1049/el.2015.3637

17. Seman, F. C., et al. "Design of a salisbury screen absorber using frequency selective surfaces to improve bandwidth and angular stability performance," IET Microwaves, Antennas & Propagation, Vol. 5, No. 2, 149-156, Jan. 31, 2011.
doi:10.1049/iet-map.2010.0072