Vol. 58
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-01-27
Low Side Lobe Level Multilayer Antenna for Wireless Applications
By
Progress In Electromagnetics Research Letters, Vol. 58, 105-111, 2016
Abstract
A low cost and easy fabrication multilayer antenna for wireless applications was presented to cover the industrial, scientific, and medical ISM band of (5.725-5.875) GHz with a gain of 11.7 dB. The antenna was composed of a feeding patch fabricated on a Rogers RT/Duroid 5880 substrate, and three superstrate layers of Rogers RO3006 were located above the feeding patch at a specific height for each layer. The superstrate layers were added to enhance the bandwidth and gain of the antenna and reduce its side-lobe level and return loss. The simulated and measured results of the operating frequency, return loss, bandwidth, and gain for the antenna were presented. CST Microwave Studio was used in this design's simulation.
Citation
Safa Nassr Nafea, Alyani Ismail, and Raja Syamsul Azmir Raja Abdullah, "Low Side Lobe Level Multilayer Antenna for Wireless Applications," Progress In Electromagnetics Research Letters, Vol. 58, 105-111, 2016.
doi:10.2528/PIERL15112202
References

1. Jothi Chitra, R. and V. Nagarajan, "Double L-slot microstrip patch antenna array for WiMAX and WLAN applications," Comput. Electr. Eng., Vol. 39, No. 3, 1026-1041, 2013.
doi:10.1016/j.compeleceng.2012.11.024

2. Mak, C., H. Wong, and K. Luk, "High-gain and wide-band single-layer patch," IEEE Trans. Veh. Technol., Vol. 54, No. 1, 33-40, 2005.
doi:10.1109/TVT.2004.838899

3. Kim, J. W., T. H. Jung, H. K. Ryu, J. M. Woo, C. S. Eun, and D. K. Lee, "Compact multiband microstrip antenna using inverted-L- and T-shaped parasitic elements," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 1299-1302, 2013.
doi:10.1109/LAWP.2013.2283796

4. Munir, A., G. Petrus, and H. Nusantara, "Multiple slots technique for bandwidth enhancement of microstrip rectangular patch antenna," 2013 Int. Conf. Qual. Res. QiR 2013 - Conjunction with ICCS 2013 2nd Int. Conf. Civ. Sp., 150-154, 2013.

5. Sun, X. B., M. Y. Cao, J. J. Hao, and Y. J. Guo, "A rectangular slot antenna with improved bandwidth," AEU - Int. J. Electron. Commun., Vol. 66, No. 6, 465-466, 2012.
doi:10.1016/j.aeue.2011.10.008

6. Kamakshi, K., A. Singh, M. Aneesh, and J. Ansari, "Novel design of microstrip antenna with improved bandwidth," Int. J. Microw. Sci. Technol., Vol. 2014, 7 Pages, 2014.

7. Wu, C. M., Y. L. Chen, and W. C. Liu, "A compact ultrawideband slotted patch antenna for wireless USB dongle application," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 596-599, 2012.

8. Chen, W., G. Wang, and C. Zhang, "Bandwidth enhancement of a microstrip-line-fed printed wide-slot antenna with a fractal-shaped slot," IEEE Trans. Antennas Propag., Vol. 57, No. 7, 2176-2179, 2009.
doi:10.1109/TAP.2009.2021974

9. Awida, M. H., S. H. Suleiman, and A. E. Fathy, "Substrate-integrated cavity-backed patch arrays: A low-cost approach for bandwidth enhancement," IEEE Trans. Antennas Propag., Vol. 59, No. 4, 1155-1163, 2011.
doi:10.1109/TAP.2011.2109681

10. Ang, B.-K. and B.-K. Chung, "A wideband E-shaped microstrip patch antenna for 5-6 GHz wireless communications," Progress In Electromagnetics Research, Vol. 75, 397-407, 2007.
doi:10.2528/PIER07061909

11. Lotfi-Neyestanak, A. A., "Ultra wideband rose leaf microstrip patch antenna," Progress In Electromagnetics Research, Vol. 86, 155-168, 2008.
doi:10.2528/PIER08090201

12. Mekki, A. S., M. N. Hamidon, A. Ismail, and A. R. H. Alhawari, "Gain enhancement of a microstrip patch antenna using a reflecting layer," Int. J. Antennas Propag., Vol. 2015, 7, 2015.

13. Guha, D., S. Chattopadhya, and J. Y. Siddiqui, "Estimation of gain enhancement replacing PTFE by air substrate in a microstrip patch antenna," IEEE Antennas Propag. Mag., Vol. 52, No. 3, 92-95, 2010.
doi:10.1109/MAP.2010.5586581

14. Liu, Y., X. Chen, X. Ren, and C. Liu, "High-gain planar array designed by using fragmented slots," Int. J. RF Microw., 382-388, 2013.

15. Nayan, M., M. F. Jamlos, and M. A. Jamlos, "Circularly polarized MIMO antenna array for point-to-point communication," Microw. Opt. Technol. Lett., Vol. 54, No. 1, 2781-2784, 2015.

16. Lee, R. and K.-F. Lee, "Experimental study of the two-layer electromagnetically coupled rectangular patch antenna," IEEE Trans. Antennas Propag., Vol. 38, No. 8, 5, 1990.
doi:10.1109/8.56971

17. Li, D., Z. Szabo, X. Qing, E.-P. Li, and Z. N. Chen, "A high gain antenna with an optimized metamaterial inspired superstrate," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 6018-6023, 2012.
doi:10.1109/TAP.2012.2213231

18. Dutta, K., D. Guha, C. Kumar, and Y. Antar, "New approach in designing resonance cavity high-gain antenna using nontransparent conducting sheet as the superstrate," Radio Sci., Vol. 63, No. 6, 2807-2813, 2015.

19. Vaidya, A. R., R. K. Gupta, and S. K. Mishra, "Right-hand/left-hand circularly polarized high-gain antennas using partially reflective surfaces," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 431-434, 2014.
doi:10.1109/LAWP.2014.2308926

20. Vaidya, A. R., R. K. Gupta, S. K. Mishra, and J. Mukherjee, "Efficient, high gain with low side lobe level antenna structures using parasitic patches on multilayer superstrate," Microw. Opt. Technol. Lett., Vol. 54, No. 6, 2781-2784, 2012.
doi:10.1002/mop.26818

21. Mukherjee, R. K. G. J., "Effect of superstrate material on a high-gain antenna using array of parasitic patches," Microw. Opt. Technol. Lett., Vol. 52, No. 1, 82-88, 2010.
doi:10.1002/mop.24850

22. Gupta, R. K. and G. Kumar, "High-gain multilayer 2×2 antenna array for wireless applications," Microw. Opt. Technol. Lett., Vol. 50, No. 11, 2781-2784, 2008.

23. Vandenbosch, G. A. E. and A. van de Capelle, "Study of gain enhancement method for microstrip antennas using moment method," IEEE Trans. Antennas Propag., Vol. 43, No. 3, 227-231, 1995.
doi:10.1109/8.371990