Vol. 56
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-08-30
Novel Compact Dual-Band Branch-Line Couplers with Half Elliptical-Ring Impedance Stub Lines
By
Progress In Electromagnetics Research Letters, Vol. 56, 9-15, 2015
Abstract
Novel compact dual-band branch-line couplers are presented. By using ahalf elliptical-ring impedance stub as a basic unit, dual-band branch-line couplers are obtained. Sincea couple of half elliptical-ring impedance stubs can be folded inward to its enclosed areawithout overlap, the branch-line couplercan be miniaturized. In order to verify the effectiveness of the half elliptical-ring impedance stub, two different branch-line couplers operating at 2.4/5.8 GHz are designed, fabricated and tested. Measured results agree well with simulated ones. Compared with the stepped-impedance-stub branch-line couplers, sizes of the proposed couplers are reduced by 43% and 30%, respectively.
Citation
Yan-Ling Han, Yong-Chang Jiao, Tao Ni, and Zi-Bin Weng, "Novel Compact Dual-Band Branch-Line Couplers with Half Elliptical-Ring Impedance Stub Lines," Progress In Electromagnetics Research Letters, Vol. 56, 9-15, 2015.
doi:10.2528/PIERL15072802
References

1. Cheng, K.-K.M. and F.-L.Wong, "A novel approach to the design and implementation of dual-band compact planar 90º branch-line coupler," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 11, 2458-2463, Nov. 2004.
doi:10.1109/TMTT.2004.837151

2. Park, M.-J. and B. Lee, "Dual-band, cross coupled branch line coupler," IEEE Microwave Wireless Components Letters, Vol. 15, No. 10, 655-657, Oct. 2005.
doi:10.1109/LMWC.2005.856683

3. Collado, C., A. Grau, and F. De Flaviis, "Dual-band planar quadrature hybrid with enhanced bandwidth response," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 1, 180-188, Jan. 2006.
doi:10.1109/TMTT.2005.860306

4. Zhang, H. L. and H. L., "A stub tapped branch-line coupler for dual-band operations," IEEE Microwave Wireless Components Letters, Vol. 17, No. 2, 106-108, Feb. 2007.
doi:10.1109/LMWC.2006.890330

5. Tanaka, H., Y. Sasaki, T. Hashimoto, Y. Yagi, and Y. Ishikawa, "Miniaturized 90 degree hybrid coupler using high dielectric substrate for QPSK modulator," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 793-796, Jun. 1996.

6. Toyoda, I., T. Hirota, T. Hiraoka, and T. Tokumitsu, "Multilayer MMIC branch-line coupler and broad-side coupler," IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium Digest, 79-82, Jun. 1992.

7. Eccleston, K. W. and S. H. M. Ong, "Compact planar microstripline branch-line and rat-race couplers," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 10, 2119-2115, Oct. 2003.
doi:10.1109/TMTT.2003.817442

8. Sheta, A. F., A. S. Mohra, and S. F. Mahmoud, "A new class of miniature quadrature couplers for MIC and MMIC applications," Microwave and Optical Technology Letters, Vol. 34, No. 3, 215-219, Aug. 2002.
doi:10.1002/mop.10421

9. Tseng, C. H. and C. L. Chang, "A rigorous design methodology for compact planar branch-line and rat-race couplers with asymmetrical T-structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 7, 2085-2092, Jul. 2012.
doi:10.1109/TMTT.2012.2195019

10. Ahn, H. R. and S. Nam, "Compact microstrip 3-dB coupled-line ring and branch-line hybrids with new symmetric equivalent circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 3, 1067-1078, Feb. 2013.
doi:10.1109/TMTT.2013.2241783

11. Chin, K. S., K. M. Lin, Y. H, and Wei, "Compact dual-band branch-line and rat-race couplers with stepped-impedance-stub lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 5, 1213-1221, May 2010.
doi:10.1109/TMTT.2010.2046064