Vol. 56
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-09-01
Reduction of Eddy Current Loss of Permanent-Magnet Machines with Fractional Slot Concentrated Windings
By
Progress In Electromagnetics Research Letters, Vol. 56, 39-46, 2015
Abstract
Fractional slots concentrated windings (FSCWs) are characterized with high magnetic motive force (MMF) harmonics which results in undesirable effects on permanent-magnet (PM) machines. A new design technique is reported in this paper in order to simultaneously reduce the sub- and high MMF harmonics. By using multiple layer windings and different turns per coil, a new 18-teeth/10-poles FSCWs PM machine is designed. Then, this machine is evaluated as compared with a conventional 12-teeth/10-poles FSCWs PM machine. Both machines are designed under the same electrical and geometrical constrains. The obtained results verify the high performances of the newly designed machine. Due to the adopted new winding type, the proposed design can effectively reduce eddy current loss in PMs as compared with the conventional design.
Citation
Jinghua Ji, Haiyou Chen, and Wenxiang Zhao, "Reduction of Eddy Current Loss of Permanent-Magnet Machines with Fractional Slot Concentrated Windings," Progress In Electromagnetics Research Letters, Vol. 56, 39-46, 2015.
doi:10.2528/PIERL15072006
References

1. Guo, Y., L. Wang, and C. Liao, "Systematic analysis of conducted electromagnetic interferences for the electric drive system in electric vehicles," Progress In Electromagnetics Research, Vol. 134, 359-378, 2013.
doi:10.2528/PIER12092816

2. Guo, Y., L. Wang, and C. Liao, "Modeling and analysis of conducted electromagnetic interference in electric vehicle power supply system," Progress In Electromagnetics Research, Vol. 139, 193-209, 2013.
doi:10.2528/PIER13031101

3. El-Refaie, A. M. and M. Ayman, "Fractional-slot concentrated-windings synchronous permanent magnet machines: Opportunities and challenges," IEEE Transactions on Industrial Electronics, Vol. 57, No. 1, 107-121, 2010.
doi:10.1109/TIE.2009.2030211

4. Bianchi, N. and E. Fornasiero, "Index of rotor losses in three-phase fractional-slot permanent magnet machines," IET Electric Power Application, Vol. 3, No. 5, 381-388, 2009.
doi:10.1049/iet-epa.2008.0151

5. Ishak, D., Z. Q. Zhu, and D. Howe, "Eddy-current loss in the rotor magnets of permanent-magnet brushless machines having a fractional number of slots per pole," IEEE Transactions on Magnetics, Vol. 41, No. 9, 2462-2469, 2005.
doi:10.1109/TMAG.2005.854337

6. Nysveen, A., R. Nilssen, R. Lorenz, and T. Rolvag, "Influence of pole and slot combinations on magnetic forces and vibration in low-speed PM wind generators," IEEE Transactions on Magnetics, Vol. 50, No. 5, 6677574, 2014.

7. Fu, X., D. Xu, M. lin, and X. Li, "Calculation and analysis of rotor eddy current loss of permanent magnet-inductor hybrid excited synchronous generator," IEEE Transactions on Magnetics, Vol. 49, No. 5, 2389-2392, 2013.
doi:10.1109/TMAG.2012.2236824

8. Wang, J., K. Atallah, R. Chin, W. M. Arshad, and H. Lendenmann, "Rotor eddy-current loss in permanent-magnet brushless AC machines," IEEE Transactions on Magnetics, Vol. 46, No. 7, 2701-2707, 2010.
doi:10.1109/TMAG.2010.2042963

9. Dajaku, G. and D. Gerling, "The influence of permeance effect on the magnetic radial forces of permanent magnet synchronous machines," IEEE Transactions on Magnetics, Vol. 49, No. 6, 2953-2966, 2013.
doi:10.1109/TMAG.2013.2241073

10. Torkaman, H. and E. Afjei, "Radial force characteristic assessment in a novel two-phase dual layer srg using FEM," Progress In Electromagnetics Research, Vol. 125, 185-202, 2012.
doi:10.2528/PIER12010408

11. Farnasiero, E., L. Aberti, N. Bianchi, and S. Bolognani, "Considerations on selecting fractional-slot nonoverlapped coil winding," IEEE Transaction on Industry Application, Vol. 49, No. 3, 1316-1324, 2013.
doi:10.1109/TIA.2013.2251853

12. Cistelecan, M. and F. Ferreira, "Three phase tooth-concentrated multiple-layer fractional windings with low space harmonic content," IEEE Energy Conversion Congress and Exposition, ECCE --- Proceeding, 1399-1405, 2010.

13. Kim, H.-J., D.-J. Kim, and J.-P. Hong, "Characteristic analysis for concentrated multiple-layer winding machine with optimum turn ratio," IEEE Transactions on Magnetics, Vol. 50, No. 2, 6749104, 2014.

14. Dajaku, G., X. Wei, and D. Gerling, "Reduction of low space harmonics for the fractional slot concentrated windings using a novel stator design," IEEE Transactions on Magnetics, Vol. 50, No. 5, 6680738, 2014.
doi:10.1109/TMAG.2013.2294754

15. Dajaku, G. and D. Gerling, "A novel 24-slots/10-poles winding topology for electric machines," IEEE International Electric Machines and Drives Conference, IEMDC, 65-70, 2011.

16. Jiabin, W., V. I. Patel, and W. Weiya, "Fractional-slot permanent magnet brushless machines with low space harmonic contents," IEEE Transactions on Magnetics, Vol. 50, No. 1, 2280838, 2014.

17. Dajaku, G. and D. Gerling, "A novel tooth concentrated winding with low space harmonic contents," IEEE International Electric Machines and Drives Conference, IEMDC, 755-760, 2013.

18. Abdel-Khalik, A. S., S. Ahmed, and A. Massoud, "Low space harmonics cancellation in double layer fractional slot winding using dual multiphase winding," IEEE Transactions on Magnetics, Vol. 51, No. 5, 6935012, 2015.
doi:10.1109/TMAG.2014.2364988

19. Chen, X., J. Wang, and V. I. Patel, "A generic approach to reduction of magnetomotive force harmonics in permanent-magnet machines with concentrated multiple three-phase windings," IEEE Transactions on Magnetics, Vol. 50, No. 11, 6971311, 2014.

20. Barcaro, M., N. Bianchi, and F. Magnussen, "Analysis and tests of a dual three-phase 12-slot 10-pole permanent-magnet motor," IEEE Transactions on Industry Applications, Vol. 46, No. 6, 2355-2362, 2010.
doi:10.1109/TIA.2010.2070784

21. Barcaro, M., N. Bianchi, and F. Magnussen, "Six-phase supply feasibility using a PM fractional-slot dual winding machine," IEEE Transactions on Industry Applications, Vol. 47, No. 5, 2042-2050, 2010.
doi:10.1109/TIA.2011.2161859

22. Shute, H. A., J. C. Mallinson, D. T. Wilton, and D. J. Desmond, "One-sided fluxes in planar, cylindrical, and spherical magnetized structures," IEEE Transactions on Magnetics, Vol. 36, No. 2, 440-451, 2000.
doi:10.1109/20.825805

23. Zhu, Z. Q. and D. Howe, "Halbach permanent magnet machines and applications: A review," IEE Proceedings: Electric Power Applications, Vol. 148, No. 4, 299-308, 2001.
doi:10.1049/ip-epa:20010479

24. Penzkofer, A. and K. Atallah, "Magnetic gears for high torque applications," IEEE Transactions Proceedings: Electric Power Applications, Vol. 148, No. 4, 299-308, 2001.
doi:10.1049/ip-epa:20010479

24. Penzkofer, A. and K. Atallah, "Magnetic gears for high torque applications," IEEE Transactions on Magnetics, Vol. 50, No. 11, 6971672, 2014.
doi:10.1109/TMAG.2014.2328093