Vol. 51
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-01-09
Joint Self-Adaptive Correlation Method and Modified Empirical Mode Decomposition for Soft Defect Detection in Cable by Reflectometry
By
Progress In Electromagnetics Research Letters, Vol. 51, 47-52, 2015
Abstract
In a previous paper, we have introduced an innovative approach called the self-adaptive correlation method (SACM). It consists in treating the reflectogram in order to amplify the signatures of soft defects and make them more easily detectable. This method allows to highlight the soft defect while attenuating the noise present on the reflectogram and has the advantage of reducing the computational complexity compared to the state of the art. We drew attention to the sensitivity of the performance of this method to noise. In this paper, we propose a solution for the pre-denoising of reflectogram before applying the SACM. This solution consists of an adapted version of the empirical mode decomposition algorithm, we called MEMD for Modified Empirical Mode Decomposition which bypasses some limitations of the conventional EMD.
Citation
Soumaya Sallem, and Nicolas Ravot, "Joint Self-Adaptive Correlation Method and Modified Empirical Mode Decomposition for Soft Defect Detection in Cable by Reflectometry," Progress In Electromagnetics Research Letters, Vol. 51, 47-52, 2015.
doi:10.2528/PIERL14120503
References

1. Pan, T.-W., C.-W. Hsue, and J.-F. Huang, "Time-domain reflectometry using arbitrary incident waveforms," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 11, 2558-2563, 2002.
doi:10.1109/TMTT.2002.804644

2. Vanhamme, H., "High resolution frequency-domain reflectometry," IEEE Transactions on Instrumentation and Measurement, Vol. 39, No. 2, 369-375, Apr. 1990.
doi:10.1109/19.52517

3. Smith, P., C. Furse, and J. Gunther, "Analysis of spread spectrum time domain reflectometry for wire fault location," IEEE Sensors Journal, Vol. 5, No. 6, 1469-1478, 2005.
doi:10.1109/JSEN.2005.858964

4. Auzanneau, F., "Wire troubleshooting and diagnosis: Review and perspectives," Progress In Electromagnetics Research B, Vol. 49, 253-279, 2013.
doi:10.2528/PIERB13020115

5. Shin, Y. J., Theory and application of time-frequency analysis to transient phenomena in electric power and other physical systems, Ph.D. Thesis, University of Texas, 2004.

6. Franchet, M., Procédé de réflectométrie pour la détection de défauts non-francs dans un câble électrique et système mettant en oeuvre le procédé, EP 2769230 A1, Français Brev., 2011.

7. Proakis, J. G. and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications, 3rd Ed., Prentice-Hall, 1996.

8. Donoho, D. L., "De-noising by soft-thresholding," IEEE Trans. Inform. Theory, Vol. 41, No. 3, 613-627, 1995.
doi:10.1109/18.382009

9. Mallat, S. and Z. Zhang, "Matching pursuits with time-frequency dictionaries," IEEE Trans. Sig. Process., Vol. 41, 3397-3415, 1993.
doi:10.1109/78.258082

10. Huang, N. E., et al. "The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis," Proc. R. Soc. Lond. A, Vol. 454, 903-995, The Royal Society, 1998.

11. Sallem, S. and N. Ravot, "Self-adaptive correlation method for soft defect detection in cable by reflectometry," IEEE SENSORS 2014 Conference, 2114-2117, 2014.
doi:10.1109/ICSENS.2014.6985455