Vol. 48
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-08-23
Low-Cost Fiber-Tip Fabry-Perot Interferometer and Its Application for Transverse Load Sensing
By
Progress In Electromagnetics Research Letters, Vol. 48, 103-108, 2014
Abstract
A Fabry-Perot interferometer sensor based on a fiber-tip bubble-structure micro-cavity is proposed, fabricated, and demonstrated for transverse load sensing. The micro-cavity is fabricated by using arc discharge at the end of a multimode fiber which has been processed with chemical etching. A transverse load sensitivity of 3.64 nm/N and a relative low temperature sensitivity of about 2 pm/°C are experimentally demonstrated for the proposed fiber-tip bubble-structure micro-cavity sensor. The sensor has the advantages of low-cost, ease of fabrication and compact size, which make it a promising candidate for transverse load sensing in harsh environments.
Citation
Xiaogang Jiang, and Daru Chen, "Low-Cost Fiber-Tip Fabry-Perot Interferometer and Its Application for Transverse Load Sensing," Progress In Electromagnetics Research Letters, Vol. 48, 103-108, 2014.
doi:10.2528/PIERL14061404
References

1. Kersey, A. D., M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Ashins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightw. Technol., Vol. 15, 1442-1463, 1997.
doi:10.1109/50.618377

2. Culshaw, B., "Optical fiber sensor technologies: Opportunities and --- perhaps --- pitfalls," J. Lightw. Technol., Vol. 22, 39-50, 2004.
doi:10.1109/JLT.2003.822139

3. Kumar, S., G. Sharma, and V. Singh, "Sensitivity modulation of surface plasmon resonance sensor configurations in optical fiber waveguide," Progress In Electromagnetics Research Letters, Vol. 37, 167-176, 2013.
doi:10.2528/PIERL12122801

4. Pandey, G., E. T. Thostenson, and D. Heider, "Electric time domain reflectometry sensors for non-invasive structural health monitoring of glass fiber composites," Progress In Electromagnetics Research, Vol. 137, 551-564, 2013.
doi:10.2528/PIER13020611

5. Chen, D. and X. Cheng, "Hydrostatic pressure sensor based on a gold-coated fiber modal interferometer using lateral offset splicing of single mode fiber," Progress In Electromagnetics Research, Vol. 124, 315-329, 2012.
doi:10.2528/PIER11122307

6. Wei, T., Y. Han, Y. Li, H. Tsai, and H. Xiao, "Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement," Opt. Exp., Vol. 16, 5764-5769, 2008.
doi:10.1364/OE.16.005764

7. Liao, C. R., T. Y. Hu, and D. N. Wang, "Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing," Opt. Exp., Vol. 20, 22813-22818, 2012.
doi:10.1364/OE.20.022813

8. Tian, J., Y. Lu, Q. Zhang, and M. Han, "Microfluidic refractive index sensor based on an all-silica in-line Fabry-Perot interferometer fabricated with microstructured fibers," Opt. Exp., Vol. 21, 6633-6639, 2013.
doi:10.1364/OE.21.006633

9. Zhao, J. R., X. G. Huang, W. X. He, and J. H. Chen, "High-resolution and temperatureinsensitive fiber optic refractive index sensor based on Fresnel reflection modulated by Fabry-Perot interference," J. Lightw. Technol., Vol. 28, 2799-2803, 2010.
doi:10.1109/JLT.2010.2065215

10. Murphy, K. A., M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, "Fabry-Perot fiber-optic sensors in full-scale fatigue testing on F-15 aircraft," Appl. Opt., Vol. 31, 431-433, 1992.
doi:10.1364/AO.31.000431

11. Shi, Q., F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, "Environmentally stable Fabry-P′erot-type strain sensor based on hollow-core photonic bandgap fiber," IEEE Photon. Technol. Lett., Vol. 20, 237-239, 2008.
doi:10.1109/LPT.2007.913335

12. Liu, S., Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, "High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer," Opt. Lett., Vol. 39, 2121-2124, 2014.
doi:10.1364/OL.39.002121

13. Choi, H. Y., K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, "Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer," Opt. Lett., Vol. 33, 2455-2457, 2008.
doi:10.1364/OL.33.002455

14. Duan, D. W., Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu, "In-line all-fibre Fabry-Perot interferometer high temperature sensor formed by large lateral offset splicing," Electron. Lett., Vol. 47, 1702-1705, 2011.

15. Wang, J., B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, "Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers," Opt. Lett., Vol. 35, 619-621, 2010.
doi:10.1364/OL.35.000619

16. Wang, X., J. Xu, Y. Zhu, L. K. Cooper, and A. Wang, "All-fused-silica miniature optical fiber tip pressure sensor," Opt. Lett., Vol. 31, 885-887, 2006.
doi:10.1364/OL.31.000885

17. Wang, W., N. Wu, Y. Tian, C. Niezrecki, and X. Wang, "Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm," Opt. Exp., Vol. 18, 9006-9014, 2010.
doi:10.1364/OE.18.009006

18. Donlagic, D. and E. Cibula, "All-fiber high-sensitivity pressure sensor with SiO2 diaphragm," Opt. Lett., Vol. 30, 2071-2073, 2005.
doi:10.1364/OL.30.002071

19. Ma, J., J. Ju, L. Jin, and W. Jin, "A compact fiber-tip micro-cavity sensor for high-pressure measurement," IEEE Photon. Technol. Lett., Vol. 23, 1561-1563, 2011.
doi:10.1109/LPT.2011.2164060

20. Jauregui-Vazquez, D., J. M. Estudillo-Ayala, A. Castillo-Guzman, R. Rojas-Laguna, R. Swlvas-Aguilar, E. Vargas-Rodrigues, J. M. Sierra-Hernandez, V. G. V. Guzman-Ramos, and A. Flores-Balderas, "Highly sensitive curvature and displacement sensing setup based on an all fiber micro Fabry-Perot interferometer," Opt. Commun., Vol. 308, 289-292, 2013.
doi:10.1016/j.optcom.2013.07.041

21. Villatoro, J., V. Finazzi, G. Coviello, and V. Pruneri, "Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer," Opt. Lett., Vol. 34, 2441-2443, 2009.
doi:10.1364/OL.34.002441

22. LeBlanc, M., S. T. Vohra, T. E. Tsai, and E. J. Friebele, "Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings," Opt. Lett., Vol. 24, 1091-1093, 1999.
doi:10.1364/OL.24.001091

23. Shu, X., K. Chisholm, I. Felmeri, K. Sugden, A. Gillooly, Z. Lin, and I. Bennion, "Highly sensitive transverse load sensing with reversible sampled fiber Bragg gratings," Appl. Phys. Lett., Vol. 83, 3003-3005, 2003.
doi:10.1063/1.1618367

24. Silva-Lopez, M., W. MacPherson, C. Li, A. Moore, J. Barton, J. Jones, D. Zhao, L. Zhang, and I. Bennion, "Transverse load and orientation measurement with multicore fiber Bragg gratings," Appl. Opt., Vol. 44, 6890-6897, 2005.
doi:10.1364/AO.44.006890

25. Jewart, C., K. P. Chen, B. McMillen, M. M. Bails, S. P. Levitan, J. Canning, and I. V. Avdeev, "Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers," Opt. Lett., Vol. 31, 2260-2262, 2006.
doi:10.1364/OL.31.002260

26. Geernaert, T., G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, "Transversal load sensing with fiber Bragg gratings in microstructured optical fibers," IEEE Photon. Technol. Lett., Vol. 21, 6-8, 2009.
doi:10.1109/LPT.2008.2007915

27. Lium, Y., L. Zhang, and I. Bennion, "Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre," Electron. Lett., Vol. 35, 661-663, 1999.
doi:10.1049/el:19990457

28. Braginsky, V. B., M. L. Gorodetsky, and S. P. Vyatchanin, "Thermo-refractive noise in gravitational wave antennae," Phys. Lett. A, Vol. 271, 303-307, 2000.
doi:10.1016/S0375-9601(00)00389-3