Vol. 44

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-11-19

Foam Based Luneburg Lens Antenna at 60 GHz

By Jonathan Bor, Olivier Lafond, Herve Merlet, Philippe Le Bars, and Mohamed Himdi
Progress In Electromagnetics Research Letters, Vol. 44, 1-7, 2014
doi:10.2528/PIERL13092405

Abstract

An innovative technological process is investigated to easily manufacture inhomogeneous Luneburg lenses. A unique foam material is drilled and pressed to achieve the different dielectric constant needed to follow the index law inside the lens. The performance of such 60 GHz antenna is described and the antenna prototype is measured in terms of gain and radiation patterns. The results show a good efficiency (60% with a directivity of 18-19 dBi) and demonstrate the feasibility of this kind of Luneburg lens, through the use of a simple technological process. The lens with a diameter of 56 mm and a thickness of 3 mm operates in the 57-66 GHz bandwidth. The magnitude of S11 parameter is under -10 dB in the whole bandwidth and an half-power beamwidth of 5° and 50° in H-plane and E-plane respectively is reached.

Citation


Jonathan Bor, Olivier Lafond, Herve Merlet, Philippe Le Bars, and Mohamed Himdi, "Foam Based Luneburg Lens Antenna at 60 GHz ," Progress In Electromagnetics Research Letters, Vol. 44, 1-7, 2014.
doi:10.2528/PIERL13092405
http://jpier.org/PIERL/pier.php?paper=13092405

References


    1. Guo, N., R. C. Qiu, and K. Takahashi, "60-GHz millimeter-wave radio: Principle, technology, and new results," EURASIP Journal on Wireless Communications and Networking, Vol. 2007, No. 1, 48, 2007.
    doi:10.1155/2007/98938

    2. Luneburg, R. K., The Mathematical Theory of Optics, , Brown University Press, 1944.

    3. Pfeiffer, C. and A. Grbic, "A printed broadband Luneburg lens antenna," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 9, 3055-3059, 2010.
    doi:10.1109/TAP.2010.2052582

    4. Cheng, Q., H. F. Ma, and T. J. Cui, "Broadband planar Luneburg lens based on complementary metamaterials," Applied Physical Letters, Vol. 95, 181901, 2009.
    doi:10.1063/1.3257375

    5. Mosallaei, H. and Y. Rahmat-Samii, "Nonuniform Luneburg and two-shell lens antennas: Radiation characteristics and design optimization," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 1, 60-69, 2001.
    doi:10.1109/8.910531

    6. Emerson and Cuming, "Stepped-index Luneburg lenses: Antennas and reflective devices," Electronic Design, 1960.

    7. Fuchs, B., O. Lafond, S. Palud, L. Le Coq, M. Himdi, M. C. Buck, and S. Rondineau, "Comparative design and analysis of Luneburg and half maxwell fish-eye lens antennas," IEEE Transations on Antennas and Propagation, Vol. 56, No. 9, 3058-3062, 2008.
    doi:10.1109/TAP.2008.928818

    8. Rondineau, S., M. Himdi, and J. Sorieux, "A sliced spherical Luneburg lens," IEEE Antennas Wireless Propagation Letter, Vol. 2, No. 1, 163-166, 2003.
    doi:10.1109/LAWP.2003.819045

    9. Sato, K. and H. Ujiie, "A plate Luneberg lens with the permittivity distribution controlled by hole density," Electronics and Communications in Japan, Vol. 85, No. 9, 1-12, 2002.

    10. Hua, C. Z., X. D. Wu, N. Yang, H. X. Wu, B. Li, and W. Wu, "A fan-beam millimeter-wave antenna based on modified luneburg cylindrical lens," PIERS Proceedings, 207-210, 2011.

    11. Fuchs, B., L. Le Coq, O. Lafond, S. Rondineau and M. Himdi, "Design optimization of multishell Luneburg lenses," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 2, 283-289, 2007.
    doi:10.1109/TAP.2006.889849

    12. Merlet, H., P. Le Bars, O. Lafond, and M. Himdi, "Manufacturing method of a dielectric material and its applications to millimeter-waves beam forming antenna systems," Patent WO2013083794, 2013.

    13. Airex Baltek, .
    doi:http://www.corematerials.3acomposites.com/

    14. ABmm, .
    doi: http://www.abmillimetre.com/

    15. Rohacell, .
    doi:http://www.rohacell.com