Vol. 44
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-11-19
Foam Based Luneburg Lens Antenna at 60 GHz
By
Progress In Electromagnetics Research Letters, Vol. 44, 1-7, 2014
Abstract
An innovative technological process is investigated to easily manufacture inhomogeneous Luneburg lenses. A unique foam material is drilled and pressed to achieve the different dielectric constant needed to follow the index law inside the lens. The performance of such 60 GHz antenna is described and the antenna prototype is measured in terms of gain and radiation patterns. The results show a good efficiency (60% with a directivity of 18-19 dBi) and demonstrate the feasibility of this kind of Luneburg lens, through the use of a simple technological process. The lens with a diameter of 56 mm and a thickness of 3 mm operates in the 57-66 GHz bandwidth. The magnitude of S11 parameter is under -10 dB in the whole bandwidth and an half-power beamwidth of 5° and 50° in H-plane and E-plane respectively is reached.
Citation
Jonathan Bor, Olivier Lafond, Herve Merlet, Philippe Le Bars, and Mohamed Himdi, "Foam Based Luneburg Lens Antenna at 60 GHz ," Progress In Electromagnetics Research Letters, Vol. 44, 1-7, 2014.
doi:10.2528/PIERL13092405
References

1. Guo, N., R. C. Qiu, and K. Takahashi, "60-GHz millimeter-wave radio: Principle, technology, and new results," EURASIP Journal on Wireless Communications and Networking, Vol. 2007, No. 1, 48, 2007.
doi:10.1155/2007/98938

2. Luneburg, R. K., The Mathematical Theory of Optics, , Brown University Press, 1944.

3. Pfeiffer, C. and A. Grbic, "A printed broadband Luneburg lens antenna," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 9, 3055-3059, 2010.
doi:10.1109/TAP.2010.2052582

4. Cheng, Q., H. F. Ma, and T. J. Cui, "Broadband planar Luneburg lens based on complementary metamaterials," Applied Physical Letters, Vol. 95, 181901, 2009.
doi:10.1063/1.3257375

5. Mosallaei, H. and Y. Rahmat-Samii, "Nonuniform Luneburg and two-shell lens antennas: Radiation characteristics and design optimization," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 1, 60-69, 2001.
doi:10.1109/8.910531

6. Emerson and Cuming "Stepped-index Luneburg lenses: Antennas and reflective devices," Electronic Design, 1960.

7. Fuchs, B., O. Lafond, S. Palud, L. Le Coq, M. Himdi, M. C. Buck, and S. Rondineau, "Comparative design and analysis of Luneburg and half maxwell fish-eye lens antennas," IEEE Transations on Antennas and Propagation, Vol. 56, No. 9, 3058-3062, 2008.
doi:10.1109/TAP.2008.928818

8. Rondineau, S., M. Himdi, and J. Sorieux, "A sliced spherical Luneburg lens," IEEE Antennas Wireless Propagation Letter, Vol. 2, No. 1, 163-166, 2003.
doi:10.1109/LAWP.2003.819045

9. Sato, K. and H. Ujiie, "A plate Luneberg lens with the permittivity distribution controlled by hole density," Electronics and Communications in Japan, Vol. 85, No. 9, 1-12, 2002.

10. Hua, C. Z., X. D. Wu, N. Yang, H. X. Wu, B. Li, and W. Wu, "A fan-beam millimeter-wave antenna based on modified luneburg cylindrical lens," PIERS Proceedings, 207-210, Sep. 2011.

11. Fuchs, B., L. Le Coq, O. Lafond, S. Rondineau and M. Himdi, "Design optimization of multishell Luneburg lenses," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 2, 283-289, 2007.
doi:10.1109/TAP.2006.889849

12. Merlet, H., P. Le Bars, O. Lafond, and M. Himdi, "Manufacturing method of a dielectric material and its applications to millimeter-waves beam forming antenna systems," Patent WO2013083794, 2013.

13. Airex Baltek.
doi:http://www.corematerials.3acomposites.com/

14. ABmm.
doi: http://www.abmillimetre.com/

15. Rohacell.
doi:http://www.rohacell.com