Vol. 40
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-05-01
Symmetric Coupled Composite Right-/Left-Handed Transmission Line in Common-/Differential-Mode Operation
By
Progress In Electromagnetics Research Letters, Vol. 40, 1-8, 2013
Abstract
In this paper, a novel four-port symmetric coupled composite right-/left-handed (CRLH) transmission line in common-/differential-mode operation is introduced. The symmetric metamaterial structure is based on a unit-cell which under a differential-mode excitation behaves like a CRLH metamaterial with bandpass filter characteristics. In contrast, the CRLH metamaterial is below the cut-off frequency under a common-mode excitation. To validate these features, a five-cell four-port symmetric CRLH-TL is simulated, fabricated, and measured, and the obtained results verify the bandpass filter features of the structure under differential-mode excitation.
Citation
Young Kim, and Seokhyun Sim, "Symmetric Coupled Composite Right-/Left-Handed Transmission Line in Common-/Differential-Mode Operation," Progress In Electromagnetics Research Letters, Vol. 40, 1-8, 2013.
doi:10.2528/PIERL13040305
References

1. Lin, Y.-S., C.-H. Wang, C. H. Wu, and C. H. Chen, "Novel compact parallel-coupled microstrip bandpass filters with lumped-element K-inverter," IEEE Trans. Microwave Theory & Tech., Vol. 53, No. 7, 2324-2328, Jul. 2005.

2. Chen, C.-C., Y.-R. Chen, and C.-Y. Chang, "Miniaturized microstrip coupled-line bandpass filters using quarter-wave or quasi-quarter-wave resonators," IEEE Trans. Microwave Theory & Tech., Vol. 51, No. 1, 120-131, Jan. 2003..
doi:10.1109/TMTT.2002.806924

3. Bockelman, D. E. and W. R. Eisenstant, "Combined differential and common-mode scattering parameters: Theory and simulation," IEEE Trans. Microwave Theory & Tech., Vol. 43, No. 7, 1530-1539, Jul. 1995.
doi:10.1109/22.392911

4. Goto, R., H. Deguchi, and M. Tsuji, "Composite right/left-handed transmission lines based on conductor-backed coplanar strips for antenna application," Proceeding of the 36th European Microwave Conference, 1040-1043, Sep. 2006.

5. Liu, C. and W. Menzel, "Broadband via-free microstrip balun using metamaterial transmission lines," IEEE Microwave Wireless Compon. Lett., Vol. 18, No. 7, 437-439, Jul. 2008.

6. Kim, Y., E. Kim, A. Lai, D. S. Goshi, and T. Itoh, "Integrated mixer based on composite right/left-handed leaky-wave antenna," 2008 IEEE MTT-S Int. Microwave Symp., 1317-1320, Jun. 2008.

7. Le, L., C. Caloz, and T. Itoh, "Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability," Electron. Lett., Vol. 38, No. 23, 1414-1416, Nov. 2002.

8. Hashemi, M. R. and T. Itoh, "Dispersion engineered metamaterial-based transmission line for conformal surface application," 2008 IEEE MTT-S Int. Microwave Symp., 331-334, Jun. 2008.
doi:10.1109/MWSYM.2008.4633170

9. Cao, W.-Q., B. Zhang, A. Liu, T. Yu, D. Guo, and Y. Wei, "Novel phase-shifting characteristic of CRLH-TL and its application in the design of dual-band dual-mode dual polarization antenna," Progress In Electromagnetics Research, Vol. 131, 375-390, 2012.

10. Caloz, C. and T. Itoh, Electromagnetic Metamaterials Transmission Line Theory and Microwave Application, J. Wiley & Sons, New Jersey, 2006.

11. Casares-Miranda, F., P. Otero, E. Marquez-Segura, and C. Camacho-Pealosa, "Wire bonded interdigital capacitor," IEEE Microwave Wireless Compon. Lett., Vol. 15, No. 10, 700-702, Oct. 2005.
doi:10.1109/LMWC.2005.856835