Vol. 39
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-04-13
Design of an S-Band Two-Way Inverted Asymmetrical Doherty Power Amplifier for Long Term Evolution Applications
By
Progress In Electromagnetics Research Letters, Vol. 39, 73-80, 2013
Abstract
In this article, an S-band two-way inverted asymmetrical Doherty power amplifier (IADPA) using LDMOS FET is proposed. Due to the compact inverted load network with low inserted loss and the asymmetrical structure, the amplifier exhibits a high efficiency when operating at an output power back-off beyond 6 dB. For experimental verification, an IADPA has been implemented and a modulated Long Term Evolution (LTE) signal with 20-MHz channel bandwidth is applied as excitation. According to the measured results, the proposed amplifier can achieve a drain efficiency of 47.6% at the output power back-off of 7.7 dB from saturated power point and an adjacent channel power ratio (ACPR) less than -53 dBc with digital pre-distortion (DPD) when operating at 2.65 GHz.
Citation
Hai-Jin Zhou, and Hua-Feng Wu, "Design of an S-Band Two-Way Inverted Asymmetrical Doherty Power Amplifier for Long Term Evolution Applications," Progress In Electromagnetics Research Letters, Vol. 39, 73-80, 2013.
doi:10.2528/PIERL13032010
References

1. Bumman, K., K. Jangheon, K. Iidu, and C. Jeonghyeon, "The Doherty power amplifier," IEEE Microwave Magazine, Vol. 7, 42-50, 2006.
doi:10.1109/MW-M.2006.247914

2. Rubio, J. M., J. Fang, V. Camarchia, R. Quaglia, M. Pirola, and G. Ghione, "3-3.6 GHz wideband GaN Doherty power amplifier exploiting output compensation stages," IEEE Transactions on Microwave Theory and Tech., Vol. 60, No. 8, 2543-2548, Aug. 2012.
doi:10.1109/TMTT.2012.2201745

3. Lee, M. W., S. H. Kam, Y. S. Lee, and Y. H. Jeong, "A highly efficient three-stage Doherty power amplifier with flat gain for WCDMA applications," Journals of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2537-2545, Jan. 2010.
doi:10.1163/156939310793675619

4. Wong, S. K., C. P. Ooi, W. L. Pang, and K. Y. Chan, "A high gain and high efficiency CMOS driver amplifier for 3.5 GHz WiMAX applications," Journals of Electromagnetic Waves and Applications, Vol. 26, No. 4, 512-524, Jan. 2012.
doi:10.1163/156939312800030659

5. Zhou, R., Y. Dong, and J. Bao, "A 460MHz Doherty amplifier for IMT-advanced system," Progress In Electromagnetics Research Letters, Vol. 32, 187-195, 2012.

6. Doherty, W. H., "A new high efficiency power amplifier for modulated waves," Proceeding of the Institute of Radio Engineers, Vol. 24, No. 9, 1163-1182, Sep. 1936.

7. Lee, Y.-S., M.-W. Lee, and Y.-H. Jeong, "A highly linear and efficient two-stage GaN HEMT asymmetrical Doherty amplifier for WCDMA applications," Microwave and Optical Technology Letters, Vol. 51, No. 6, 1464-1467, Jun. 2009.
doi:10.1002/mop.24387

8. Jang, , D.-H., J.-Y. Kim, and J.-H. Kim, "46-W high efficiency unbalanced Doherty power amplifier in extended output power back-off," Microwave and Optical Technology Letters, Vol. 54, No. 7, 1612-1614, Jul. 2012.
doi:10.1002/mop.26865

9. Lee, Y.-S., M.-W. Lee, S.-H. Kam, and Y.-H. Jeong, "A highly linear and efficient three-way Doherty amplifier using two-stage GaN HEMT cells for repeater systems," Microwave and Optical Technology Letters, Vol. 51, No. 12, 2895-2898, Dec. 2009.
doi:10.1002/mop.24748

10. Jin, S., J. Zhou, and L. Zhang, "A broadband inverted Doherty power amplifier for IEEE 802.11b/g WLAN applications," Microwave and Optical Technology Letters, Vol. 53, No. 3, 636-639, Mar. 2011.
doi:10.1002/mop.25785

11. Chen, X.-Q., Y.-C. Guo, and X.-W. Shi, "Advanced design methods for a high efficiency Doherty power amplifier," Microwave and Optical Technology Letters,, Vol. 50, No. 6, 1330-1333, May 2008.
doi:10.1002/mop.23375

12. Kam, S.-H., M.-W. Lee, Y.-S. Lee, and Y.-H. Jeong, "A highly efficient and linear inverted Doherty power amplifier with unsymmetrical delay path," Microwave and Optical Technology Letters, Vol. 53, No. 6, 1302-1305, Jun. 2011.
doi:10.1002/mop.25962

13. Ahn, G., M. Kim, H. Park, S. Jung, J. Van, H. Cho, S. Kwon, J. Jeong, K. Lim, J. Y. Kim, S. C. Song, C. Park, and Y. Yang, "Design of high-efficiency and high-power inverted Doherty amplifier," IEEE Transactions on Microwave Theory and Tech., Vol. 55, 1105-1111, Jun. 2007.
doi:10.1109/TMTT.2007.896807