Vol. 38
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-03-13
Study of the Coil Structure for Wireless Chip-to-Chip Communication Applications
By
Progress In Electromagnetics Research Letters, Vol. 38, 127-136, 2013
Abstract
In this work, we propose a merged coil structure for wireless chip-to-chip communication technology. Using the proposed coil structure, the chip size can be reduced, and the transmitted power can be improved by approximately 5 dB compared to typical coil structure. To verify the feasibility of the coil, an electromagnetic simulation and a schematic simulation are performed. The coil was implemented using 50-nm digital CMOS technology. From the experimental results, the feasibility was proved.
Citation
Changhyun Lee, Jonghoon Park, Jinho Yoo, and Changkun Park, "Study of the Coil Structure for Wireless Chip-to-Chip Communication Applications," Progress In Electromagnetics Research Letters, Vol. 38, 127-136, 2013.
doi:10.2528/PIERL13022002
References

1. Lee, Y. C., H. T. Ghaffari, J. M. Segelken, "Internal thermal resistance of a multi-chip packaging design for vlsi based systems," IEEE Transactions on Components, Hybrids, and Manufacturing,, Vol. 12, No. 2, 163-169, Jun. 1989.
doi:10.1109/33.31420

2. Lu, J.-Q., "3-D hyperintegration and packaging technologies for micronano systems," Proc. IEEE, Vol. 97, No. 1, 18-30, Jan. 2009.
doi:10.1109/JPROC.2008.2007458

3. Xu, Z. and J.-Q. Lu, "Three-dimensional coaxial through-silicon-via (TSV) design," IEEE Electron. Device Letters, Vol. 33, No. 10, 1441-1443, Oct. 2012.
doi:10.1109/LED.2012.2207703

4. Yang, J.-R., H.-C. Son, and Y.-J. Park, "A class-E power amplifier with coupling coils for a wireless power transfer system," Progress In Electromagnetics Research C, Vol. 35, 13-22, 2013.

5. Yuan, N., C. R. Liu, and X. Nie, "Electromagnetic field of arbitrarily oriented coil antennas in coplex underground environment," Progress In Electromagnetics Research B, Vol. 44, 261-282, 2012.

6. Babic, S. I., C. Akyel, Y. Ren, and W. Chen, "Magnetic force calculation between circular coils of rectangular cross section with parallel axes for superconducting magnet," Progress In Electromagnetics Research B, Vol. 37, 275-288, 2012.
doi:10.2528/PIERB11110508

7. Park, C., J. Han, H. Kim, and S. Hong, "A 1.8-GHz CMOS power amplifier using a dual-primary transformer with improved efficiency in the low power region," IEEE Trans. on Microw. Theory and Tech., Vol. 56, No. 4, 782-792, Apr. 2008.
doi:10.1109/TMTT.2008.918152

8. Danesh, M. and J. R. Long, "Differentially driven symmetric microstrip inductors," IEEE Trans. on Microw. Theory and Tech., Vol. 50, No. 1, 332-341, Jan. 2002.
doi:10.1109/22.981285

9. Kang, B., H. Hwang, and C. Park, "Differential transformer using bonder-wires and patterns on a printed circuit board for RF circuit applications," Progress In Electromagnetics Research, Vol. 135, 363-371, 2013.

10. Park, C., D. H. Lee, J. Han, and S. Hong, "Tournament-shaped magnetically coupled power-combiner architecture for RF CMOS power amplifier," IEEE Trans. on Microw. Theory and Tech., Vol. 55, No. 10, 2034-2042, Oct. 2007.
doi:10.1109/TMTT.2007.905482

11. Aoki, I., S. D. Kee, D. B. Rutledge, and A. Hajimiri, "Distributed active transformer --- A new power-combining and impedance-transformation technique," IEEE Trans. on Microw. Theory and Tech., Vol. 50, No. 1, 316-331, Jan. 2002.
doi:10.1109/22.981284

12. Brandao Faria, J. A. M., "The effect of power-line sagged conductors on the evaluation of the differential voltage in a nearby circuit at ground level," Progress In Electromagnetics Research M, Vol. 24, 209-220, 2012.