Vol. 30

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-03-15

Effect of Amorphous, Nonmagnetic Barrier Layer on the Performance of a Multisection Wilkinson Broadband Power Divider

By Rakesh Kumar Sharma, Sandeep Patel, Arun Bindal, and Kamlesh C. Pargaien
Progress In Electromagnetics Research Letters, Vol. 30, 145-152, 2012
doi:10.2528/PIERL12021107

Abstract

A four-layer metallization Cr-Cu-NiP-Au with amorphous and nonmagnetic NiP as a barrier layer is one of the promising candidates for use in microwave integrated circuits. Multi-section Wilkinson broadband 1:2 power divider circuits are delineated photolithographically on alumina substrates metallized by Cr, TiW, Ni, NiP, copper and gold using different metallization processes. The adhesion and dc resistivity are compared for different metallization scheme. Testing and evaluation have been carried out for multi-section Wilkinson broadband 1:2 power divider in the 10 MHz-6 GHz frequency range for Cr-Cu-Au, TiW-Ni-Au and Cr-Cu-NiP-Au to see the effect of NiP. Insertion loss, return loss and isolation are measured and compared. The microwave properties do not show any appreciable differences due to the various metallizations.

Citation


Rakesh Kumar Sharma, Sandeep Patel, Arun Bindal, and Kamlesh C. Pargaien, "Effect of Amorphous, Nonmagnetic Barrier Layer on the Performance of a Multisection Wilkinson Broadband Power Divider," Progress In Electromagnetics Research Letters, Vol. 30, 145-152, 2012.
doi:10.2528/PIERL12021107
http://jpier.org/PIERL/pier.php?paper=12021107

References


    1. Keller, C. G. and R. T. Howe, Nickel-filled hexsil thermally actuated tweezers, Tech. Dig. Papers, Int. Conf. Solid-State Sensors and Actuators, Transducers'95, 376-379, Stockholm, Sweden, 1995.

    2. Coombs, Jr., C. F., Printed Circuit Handbook, 5th Ed., McGraw-Hill, New York, United States, 2001.

    3. Weil, R., J. H. Lee, I. Kim, and K. Parker, "Comparison of some mechanical and corrosion properties of electroless and electroplated Ni-P alloys," Plating Surf. Finish., Vol. 76, No. 2, 62-66, Feb. 1989.

    4. Paunovic, M. and M. Schlesinger, Fundamentals of Electrochemical Deposition, 157-158, John Wiley & Sons, Inc., NY, 1998.

    5. Pinnel, M. R. and J. E. Bennett, "Qualitative observations on the diffusion of copper and gold through a nickel barrier," Metallurgical Transactions A, Vol. 7, No. 5, 629-635, 1976.
    doi:10.1007/BF03186793

    6. Paunovic, M., P. J. Bailey, and R. G. Schad, "Electrochemically deposited diffusion barriers," J. Electrochem. Soc., Vol. 141, 1843-1850, 1994.
    doi:10.1149/1.2055015

    7. Van der Putten, A. M. T. and J. W. G. de Bakker, "Geometrical effects in the electroless metallization of fine metal patterns," J. Electrochem. Soc., Vol. 140, 2221, 1993.
    doi:10.1149/1.2220799

    8. Gawrilow, G. G., Chemical (Electroless) Nickel-Plating, Portcullis Press Ltd., Redhill, United Kingdom, 1979.

    9. Revesz, A., J. Lendvai, J. Loranth, J. Padar, and I. Bakonyi, "Studies of an electroless plated Ni-P amorphous alloy," J. Electrochem. Soc., Vol. 148, c715-c720, 2001.
    doi:10.1149/1.1405518

    10. Balaraju, J. N. and K. S. Rajam, "Electroless deposition and characterization of high phosphorus Ni-P-Si3N4 composite coatings," Int. J. Electrochem. Sci., Vol. 2, 747-761, 2007.

    11. Ruolf, A. L., Materials Science, Chapters 4 and 32, Prentice-Hall, NJ, 1973.

    12. Safranek, W. H., The Properties of Electrodeposited Metals and Alloys, 2nd Ed., Chapter 23, American Electroplaters and Surface Finishers Society, Orlando, El, 1986.

    13. Kishihara, M., et al., "A design of multi-stage, multi-way microstrip power dividers with broadband properties," IEEE MTT-S Digest, Vol. 1, 69-72, June 2004.