Vol. 31
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-04-10
Miniaturized Forced-Mode Ring Resonator with Capacitive Loading
By
Progress In Electromagnetics Research Letters, Vol. 31, 65-73, 2012
Abstract
The miniaturization of conventional ring resonators is demonstrated by forcing a voltage minimum at one end of the resonator. In addition, the resonator is loaded with a capacitance to achieve further miniaturization and reducing its sensitivity to substrate thickness tolerance. The final resonator is 73% smaller than a conventional ring resonator and has a tenfold decrease in sensitivity to substrate thickness variations. Using this resonator a 4-pole quasi-elliptic filter is fabricated showing good agreement between simulation and experimental results.
Citation
Alonso Corona-Chavez, J. Roberto Reyes Ayona, D. V. B. Murthy, and Jose Luis Olvera Cervantes, "Miniaturized Forced-Mode Ring Resonator with Capacitive Loading," Progress In Electromagnetics Research Letters, Vol. 31, 65-73, 2012.
doi:10.2528/PIERL12012305
References

1. Wolf, I., "Microwave bandpass filter using degenerated modes of a microstrip ring resonator," Electronics Letters, Vol. 8, 163-164, 1972.
doi:10.1049/el:19720120

2. Rouchard, F., "New classes of microstrip resonators for HTS microwave filter applications," IEEE International Microwave Symposium Digest, 1023-1026, Baltimore, MD, 1998.

3. Gorur, A., "A novel dual-mode bandpass filter with wide stopband using the properties of microstrip open-loop resonator," IEEE Microwave and Wireless Components Letters, Vol. 12, 386-388, 2002.
doi:10.1109/LMWC.2002.804560

4. Wolff, I. and V. K. Tripathi, "The microstrip open ring resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, 102-107, 1984.
doi:10.1109/TMTT.1984.1132619

5. Zhu, L., P. M. Wecowski, and K. Wu, "New planar dual-mode filter using cross-slotted patch resonator for simultaneous size and loss reduction," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 650-654, 1999.
doi:10.1109/22.763171

6. Hong, J. S., E. P. McErlean, and B. Karyamapudi, "Eighteen pole superconducting CQ filter for future wireless applications," IEE Proceedings on Microwaves Antennas and Propagation, Vol. 153, 205-211, 2006.
doi:10.1049/ip-map:20050043

7. Vendik, I., et al. "Design of trimmingless narrowband planar HTS filters," Springer Journal of Superconductivity and Novel Magnetism, Vol. 14, 21-28, 2001.
doi:10.1023/A:1007871903562

8. Zhou, J., M. J. Lancaster, and F. Huang, "HTS coplanar meander line resonator filters with suppressed slot line mode," IEEE Transactions on Applied Superconductivity, Vol. 14, 28-32, 2004.
doi:10.1109/TASC.2004.824327

9. Corona-Chavez, A., M. J. Lancaster, and H. T. Su, "HTS quasi-elliptic filter using capacitive-loaded cross-shape resonators with low sensitivity to substrate thickness," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 117-120, 2007.
doi:10.1109/TMTT.2006.888577

10. Wadell, B. C., Transmissión Line Design Handbook, Artech House, 1991.

11. Sonnet software, v.12.

12. Pettenpaul, E., H. Kaputsa, A. Weisgerber, H. Mampe, J. Lunginsland, and I. Wolff, "CAD models of lumped elements on GaAs up to 18 GHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 36, 294-304, 1988.
doi:10.1109/22.3518

13. Hong, J.-S. and M. J. Lancaster, Microstrip Filters for RF/microwave Applications, John Wiley and Sons, 2001.
doi:10.1002/0471221619