Vol. 30

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-02-15

Simple Skewon Medium Realization of dB Boundary Conditions

By Ismo Veikko Lindell and Ari Sihvola
Progress In Electromagnetics Research Letters, Vol. 30, 29-39, 2012
doi:10.2528/PIERL11121802

Abstract

Considering the class of bi-isotropic media, a special case called the class of simple skewon (SS) media is defined. The SS medium depends on a single parameter. A plane wave incident on a planar interface of an SS medium is shown to reflect as from a DB boundary with vanishing normal components of D and B field vectors. This offers another possibility to realize the DB boundary conditions in terms of a medium interface. The same property is shown to apply for curved boundaries as well.

Citation


Ismo Veikko Lindell and Ari Sihvola, "Simple Skewon Medium Realization of dB Boundary Conditions," Progress In Electromagnetics Research Letters, Vol. 30, 29-39, 2012.
doi:10.2528/PIERL11121802
http://jpier.org/PIERL/pier.php?paper=11121802

References


    1. Kong, J. A., Theory of Electromagnetic Waves, Wiley, New York, 1975.

    2. Lindell, I. V., Methods for Electromagnetic Field Analysis, Oxford University Press, 1992.

    3. Deschamps, G. A., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, No. 6, 676-696, 1981.
    doi:10.1109/PROC.1981.12048

    4. Lindell, I. V., Differential Forms in Electromagnetics, Wiley, New York, 2004.
    doi:10.1002/0471723096

    5. Hehl, F. W. and Y. Obukhov, Foundations of Classical Electrodynamics, Birkhäuser, Boston, 2004.

    6. Lindell, I. V. and A. Sihvola, "Perfect electromagnetic conductor," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 7, 861-869, 2005.
    doi:10.1163/156939305775468741

    7. Hehl, F. W., Y. N. Obukhov, and G. F. Rubilar, "On a possible new type of a T odd skewon field linked to electromagnetism," General Relativity and Quantum Cosmology, 2002.

    8. Obukhov, Y. N. and F. W. Hehl, "On possible skewon effects on light propagation," Phys. Rev. D, Vol. 70, 125015, 2004.
    doi:10.1103/PhysRevD.70.125015

    9. Hehl, F. W., Y. N. Obukhov, G. F. Rubilar, and M. Blagojevic, "On the theory of the skewon from electrodynamics to gravity," Phys. Lett. A, Vol. 347, 14-24, 2005.
    doi:10.1016/j.physleta.2005.06.033

    10. Nieves, J. F. and P. B. Pal, "The third electromagnetic constant of an isotropic medium," Am. J. Phys., Vol. 62, 207-216, 1994.
    doi:10.1119/1.17598

    11. Lindell, I. V., "The class of bi-anisotropic IB media," Progress In Electromagnetics Research, Vol. 57, 1-18, 2006.
    doi:10.2528/PIER05061302

    12. Lindell, I. V., A. Sihvola, S. A. Tretyakov, and A. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House, Boston, 1994.

    13. Paiva, C. R. and S. A. Matos, Is the perfect electromagnetic conductor the most general truly isotropic medium?, Proc. Metamaterials Congress, 176-178, Barcelona, 2011.

    14. Lindell, I. V. and A. Sihvola, "Transformation method for problems involving perfect electromagnetic (PEMC) structures," IEEE Trans. Antennas Propag., Vol. 53, No. 9, 3005-3011, Sep. 2005.
    doi:10.1109/TAP.2005.854519

    15. Sihvola, A. and I.V. Lindell, "Perfect electromagnetic conductor medium," Ann. Phys. (Berlin), Vol. 17, No. 9--10, 787-802, 2008.
    doi:10.1002/andp.200710297

    16. Rumsey, V. R., Some new forms of Huygens' principle, IRE Trans. Antennas Propagat., Vol. 7, S103-S116, Special Supplement, 1959.

    17. Yee, K. S., "Uniqueness theorems for an exterior electromagnetic field," SIAM J. Appl. Math., Vol. 18, No. 1, 77-83, 1970.
    doi:10.1137/0118010

    18. Kress, R., "On an exterior boundary-value problem for the time-harmonic Maxwell equations with boundary conditions for the normal components of the electric and magnetic field," Math. Meth. in the Appl. Sci., Vol. 8, 77-92, 1986.
    doi:10.1002/mma.1670080106

    19. Lindell, I. V. and A. Sihvola, "Electromagnetic boundary condition and its realization with anisotropic metamaterial," Phys. Rev. E, Vol. 79, No. 2, 026604-7, 2009.
    doi:10.1103/PhysRevE.79.026604

    20. Zhang, B., H. Chen, B.-I. Wu, and J. A. Kong, "Extraordinary surface voltage effect in the invisibility cloak with an active device inside," Phys. Rev. Lett., Vol. 100, 063904-4, Feb. 15, 2008.

    21. Yaghjian, A. D. and S. Maci, "Alternative derivation of electromagnetic cloaks and concentrators," New J. Phys., Vol. 10, 115022-29, 2008. Corrigendum, ibid, Vol. 11, 039802, 2009.
    doi:10.1088/1367-2630/10/11/115022

    22. Weder, R., "The boundary conditions for point transformed electromagnetic invisible cloaks," J. Phys. A, Vol. 41, 415401-17, 2008.
    doi:10.1088/1751-8113/41/41/415401

    23. Lindell, I. V., A. Sihvola, P. Ylä-Oijala, and H. Wallén, "Zero backscattering from self-dual objects of finite size," IEEE Trans. Antennas Propag., Vol. 57, No. 9, 2725-2731, Sep. 2009.
    doi:10.1109/TAP.2009.2027180

    24. Lindell, I. V. and A. H. Sihvola, "Uniaxial IB-medium interface and novel boundary conditions," IEEE Trans. Antennas Propagat., Vol. 57, No. 3, 694-700, Mar. 2009.
    doi:10.1109/TAP.2009.2013431

    25. Van Bladel, J., Electromagnetic Fields, 2nd Ed., 1025-1030, IEEE Press, Piscataway, NJ, 2007.
    doi:10.1002/9780470124581.app3

    26. Lindell, I. V. and A. Sihvola, "Electromagnetic boundary conditions defined in terms of normal field components," Trans. IEEE Antennas Propag., Vol. 58, No. 4, 1128-1135, Apr. 2010.
    doi:10.1109/TAP.2010.2041149

    27. Tretyakov, S., I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 5, 695-706, 2003.
    doi:10.1163/156939303322226356