Vol. 31
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-04-18
Multi-Layer WSN with Power Efficient Buffer Management Policy
By
Progress In Electromagnetics Research Letters, Vol. 31, 131-145, 2012
Abstract
Power efficiency is a key issue in wireless sensor networks due to limited power supply. Buffer management is also crucially important in the scenario where the incoming traffic is higher than the output link capacity of the network since a buffer overflow causes power waste and information loss if a packet is dropped. There are many available buffer management schemes for traditional wireless networks. However, due to limited memory and power supply of sensor nodes, the existing schemes cannot be directly applied in wireless sensor networks (WSNs). In this work, we propose a multi-layer WSN with power efficient buffer management policy which simultaneously reduces the loss of relevant packets. Unlike the conventional WSNs which consider the whole network as single layer, we divide sensor network topology logically into multiple layers and give a three-layer model as an example. In our proposed scheme, the layers are differentiated by the sensors' information. The buffer can then judge the packets from different layers and then make a decision on which packet to be dropped in case of overflow. We show that our proposed multi-layer WSN can reduce the relevant packet loss and power waste for retransmission of lost packets.
Citation
Hnin Yu Shwe, Wei Peng, Haris Gacanin, and Fumiyuki Adachi, "Multi-Layer WSN with Power Efficient Buffer Management Policy," Progress In Electromagnetics Research Letters, Vol. 31, 131-145, 2012.
doi:10.2528/PIERL11121605
References

1. Akyildiz, F., et al., "Wireless sensor networks: A survey," Computer Networks, Vol. 38, 393-422, 2002.
doi:10.1016/S1389-1286(01)00302-4

2. Kuorilehto, M., M. Hannikainen, and T. D. Hamalainen, "A survey of application distribution in wireless sensor networks," EURASIP Trans. on Wireless Commun. Network, Vol. 5, No. 5, 774-788, Oct. 2005.

3. Sharma, S. and Y. Viniotis, "Optimal buffer management policies for shared buffer ATM switches," IEEE Transactions on Networking, Vol. 7, No. 4, Aug. 1999.
doi:10.1109/90.793030

4. Jacobsn, V., "Congestion avoidance and control," IEEE/ACM-SIGCOMM, 314-329, 1988.
doi:10.1145/52325.52356

5. Hormann, L. B., P. M. Glats, C. Steger, and R. Weiss, "Designing of efficient engergy harvesting systems for autonomous WSNs using a tier model," IEEE ICT Conference, 174-179, 2011.

6. Jardosh, S., N. Zunnun, P. Ranjan, and S. Srivastava, "Effect of network coding on buffer management in wireless sensor network," IEEE ISSNIP Conference, 157-162, Dec. 2008.

7. Tassiulas, L., Y. C. Hung, and S. S. Panwar, "Optimal buffer control during congestion in an ATM network node," IEEE/ACM Transactions on Networking (TON), Vol. 2, No. 4, Aug. 1994.
doi:10.1109/90.330418

8. Postel, J., "Transmission control protocol specification," SRI International, CA, Sept. 1981.

9. Gay-Fernandez, J. A., M. Garcia Sanchez, I. Cuinas, A. V. Alejos, J. G. Sanchez, and J. L. Miranda-Sierra, "Propagation analysis and deployment of a wireless sensor network in a forest," Progress In Electromagnetics Research, Vol. 106, 121-145, 2010.
doi:10.2528/PIER10040806

10. Foschini, G. J. and B. Gopinath, "Sharing memory optimally," IEEE Trans. on Commun., Vol. 31, No. 3, Mar. 1983.
doi:10.1109/TCOM.1983.1095819

11. Wei, S. X., E. J. Coyle, and M. T. Hsiao, "An optimal buffer management policy for high-performance packet switching," Proc. IEEE GLOBECOM'91, Vol. 2, 924-928, Dec. 1998.

12. Held, W., "Investigation of prioritize mechanism for ATM network,", Diploma Thesis, 964-Institute of Communications Switching and Data Techniques , University of Stuttgart, Stuttgart, Germany, 1989 .

13. Doshi, B. T., H. Heffes, and , "Overload performance of several processor queuing disciplines for the M/M/I queue," IEEE Trans. on Commun., Vol. 34, No. 6, 538-546, Jun. 1986.
doi:10.1109/TCOM.1986.1096578

14. Kroner, H., G. Hcbuterne, and P. Boyer, "Priority management in ATM switching nodes," IEEE Trans. on Commun., Vol. 9, No. 3, Apr. 1991.

15. Chai, E., M. C. Chan, and A. L. Ananda, "Coverage aware buffer management and scheduling for WSNs," IEEE SEC, 100-108, 2006.

16. Ahlswede, R., N. Cai, S. Y. R. Li, and R. W. Yeung, "Network information flow," IEEE Trans. on Info. Theory, Vol. 46, 1204-1216, Jul. 2000.

17. Cidon, I., L. Georgiadis, R. Guerin, and A. Khamisy, "Optimal buffer sharing," IEEE Trans. on Commun., Vol. 13, No. 7, Sept. 1995.

18. Kamoun, F. and L. Kleinrock, "Analysis of shared finite storage in a computer network node environment under general traffic conditions," IEEE Trans. on Commun., Vol. 28, No. 7, Jul. 1980.