Vol. 30

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-02-29

Performance Comparison of Ed, TR and Dtr IR-UWB Receivers for Combined Pam-Ppm Modulation in Realistic UWB Channels

By Heba A. Shaban and Mohamad Abou El-Nasr
Progress In Electromagnetics Research Letters, Vol. 30, 91-103, 2012
doi:10.2528/PIERL11120906

Abstract

This paper studies the bit error rate (BER) performance of non-coherent impulse-radio ultra wideband (IR-UWB) correlation receivers in the IEEE 802.15.3a channel for combined binary pulse amplitude modulation-pulse position modulation (BPAM-PPM) scheme. The BER performance is based on the channel averaged signal-to-noise ratio (SNR). The study includes simple transmitted reference (TR), differential TR (DTR), and energy detection (ED) receiver structures. Moreover, different performance parameters are addressed, namely the signal bandwidth integration window factor, number of pulses per bit, and receiver power consumption. ED receivers with BPAM-PPM are shown to outperform simple TR receivers and have a performance which approaches that of differential TR (DTR) receivers with smaller power consumption for the same design parameters.

Citation


Heba A. Shaban and Mohamad Abou El-Nasr, "Performance Comparison of Ed, TR and Dtr IR-UWB Receivers for Combined Pam-Ppm Modulation in Realistic UWB Channels," Progress In Electromagnetics Research Letters, Vol. 30, 91-103, 2012.
doi:10.2528/PIERL11120906
http://jpier.org/PIERL/pier.php?paper=11120906

References


    1. Hirt, W. and M. Weisenhorn, Robust non-coherent receiver for PAM-PPM signals, Patent 20 060 285 578, December 2006, [Online], Available: http://www.freepatentsonline.com/y2006/0285578.html.

    2. Shaban, H., M. El-Nasr, and R. Buehrer, "A framework for the power consumption and BER performance of ultra-low power wireless swearable healthcare and human locomotion tracking systems via UWB radios," 2009 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), 322-327, 2009.
    doi:10.1109/ISSPIT.2009.5407535

    3. Shaban, H., A novel highly accurate wireless wearable human locomotion tracking and gait analysis system via UWB radios, Ph.D. Dissertation, Virginia Tech., 2010.

    4. Khani, H. and P. Azmi, "Performance analysis of a high data rate UWB-DTR system in dense multipath channels," Progress In Electromagnetics Research B, Vol. 5, 119-131, 2008.
    doi:10.2528/PIERB08021003

    5. Shaban, H., M. A. El-Nasr, and R. Buehrer, "Performance of ultralow-power IR-UWB correlator receivers for highly accurate wearable human locomotion tracking and gait analysis systems," IEEE Global Telecommunications Conference, GLOBECOM 2009, 1-6, Nov. 30--Dec. 4, 2009.

    6. Reed, J. H. (ed.), An Introduction to Ultra Wideband Communication Systems, Prentice Hall, New Jersey, 2005.

    7. Chao, Y.-L. and R. Scholtz, "Optimal and suboptimal receivers for ultra-wideband transmitted reference systems," IEEE Global Telecommunications Conference, GLOBECOM 2003, Vol. 2, 759-763, Dec. 1--5, 2003.

    8. Stoica, L., Non-coherent energy detection tranceivers for ultra wideband impulse radio systems, Ph.D. dissertation, University of Oulu Finland, 2008.

    9. Bosotti, L. and G. Pirani, "A PAM-PPM signalling format in optical fibre digital communications," Optical and Quantum Electronics, Vol. 11, 71-86, 1979, 10.1007/BF00624059, [Online], Available: http://dx.doi.org/10.1007/BF00624059.
    doi:10.1007/BF00624059

    10. Abou-Rjeily, C., N. Daniele, and J.-C. Belfiore, "On high data rate space-time codes for ultra-wideband systems," 2005 IEEE International Conference on Ultra-Wideband, ICU 2005, 1-6, 2005.

    11. Shen, X., M. Guizani, R. C. Qiu, and T.-L. Ngoc (eds.), Ultra-Wideband Communications and Networks, 3rd Ed., West John Wiley & Sons, Sussex, England, 2006.
    doi:10.1002/0470028521.ch1

    12. Foerster, J., "Channel modeling sub-committee report final," Doc: IEEE P802.15-02/490r1, Tech. Rep., Feb. 2003.

    13. Hao, K. and J. A. Gubner, "Performance measures and statistical quantities of rake receivers using maximal-ratio combining on the IEEE 802.15.3a UWB channel model," IEEE Transactions on Wireless Communications, 1-7, 2005.

    14. Jia, T. and D. I. Kim, "Analysis of channel-averaged SINR for indoor UWB rake and transmitted reference systems," IEEE Transactions on Communications, Vol. 55, No. 10, 2022-2032, Oct. 2007.
    doi:10.1109/TCOMM.2007.906435

    15. Arslan, H., Z. N. Chen, and M.-G. D. Benedetto (eds.), Ultra Wideb and Wireless Communication, Wiley Interscience, New Jersey, 2006.
    doi:10.1002/0470042397

    16. Ryckaert, J., M. Verhelst, M. Badaroglu, S. Damico, V. De Heyn, C. Desset, P. Nuzzo, B. Van Poucke, P. Wambacq, A. Baschirotto, W. Dehaene, and G. Van der Plas, "A CMOS ultra-wideband receiver for low data-rate communication," IEEE J. Solid-State Circuits, Vol. 42, No. 1, 2515-2525, Nov. 2007.
    doi:10.1109/JSSC.2007.907195

    17. Verhelst, M. and W. Dehaene, "Analysis of the QAC IR-UWB receiver for low energy, low data-rate communication," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 55, No. 8, 2423-2432, Sept. 2008.
    doi:10.1109/TCSI.2008.918230

    18. J, Gubner, "The IEEE 802.15.3a UWB channel model as a two-dimensional augmented cluster process," IEEE Transactions on Information Theory, Mar. 2006.

    19. Hao, K. and J. Gubner, "The distribution of sums of path gains in the IEEE 802.15.3a UWB channel model," IEEE Transactions on Wireless Communications, Vol. 6, No. 3, 811-816, Mar. 2007.
    doi:10.1109/TWC.2007.05438

    20. Weisenhorn, M. and W. Hirt, "Robust noncoherent receiver exploiting UWB channel properties," Joint International Workshop on Ultra Wideband Systems, 2004, 156-160, May 18--21, 2004.