Vol. 30

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-03-21

Spectro-Temporal Mismatch Analysis of a Transmission Line Based on on-Wafer Optical Sampling

By Dong-Joon Lee, Jae-Yong Kwon, and Joo-Gwang Lee
Progress In Electromagnetics Research Letters, Vol. 30, 153-162, 2012
doi:10.2528/PIERL11120505

Abstract

We present an optical sampling technique that enables exploration of mismatches of a microstrip transmission line based on reflection analyses of electromagnetic pulses. The external electro-optic sampling scheme with a minute crystal detects high-speed electrical pulses over arbitrary locations of a line with very low-intrusiveness. The temporal pulsed signals measured with an on-wafer optical probing system and the corresponding spectra are obtained to analyze the transfer characteristics of a microstrip transmission line with 20 GHz bandwidth. The spectro-temporal response was cross-checked with commercial instruments. Applications of this optical probing technique to explore mismatches at the terminal port - based on both time and frequency domain reflectometry analyses - are also presented.

Citation


Dong-Joon Lee, Jae-Yong Kwon, and Joo-Gwang Lee, "Spectro-Temporal Mismatch Analysis of a Transmission Line Based on on-Wafer Optical Sampling," Progress In Electromagnetics Research Letters, Vol. 30, 153-162, 2012.
doi:10.2528/PIERL11120505
http://jpier.org/PIERL/pier.php?paper=11120505

References


    1. Agilent Technologies, Time domain analysis using a network analyzer, Application Note 1287-12, 2011.

    2. Agilent Technologies, De-embedding and embedding S-parameter networks using a vector network analyzer, Application Note 1364-1, 2009.

    3. Valdmanis, J. A. and G. A. Mourou, "Subpicosecond electrooptic sampling: Principles and applications," IEEE Journal of Quantum Electronics, Vol. 22, No. 1, 69-78, 1986.
    doi:10.1109/JQE.1986.1072867

    4. Frankel, M., J. F. Whitaker, G. A. Morou, and J. A. Valdmanis, "Ultrahigh bandwidth vector analyzer based on external electro-optic sampling," Solid State Electronics, Vol. 35, No. 2, 325-332, 1992.
    doi:10.1016/0038-1101(92)90236-6

    5. Seitz, S., M. Bieler, M. Spitzer, K. Pierz, G. Hein, and U. Siegner, "Optoelectronic measurement of the transfer function and time response of a 70 GHz sampling oscilloscope," Measurement Science and Technology, Vol. 16, No. 10, L7-L9, 2005.
    doi:10.1088/0957-0233/16/10/L02

    6. Williams, D. F., P. D. Hale, T. S. Clement, and J. M. Morgan, "Calibrated 200-GHz waveform measurement," IEEE Trans. on Microwave Theory and Tech., Vol. 53, No. 4, 1384-1388, 2005.
    doi:10.1109/TMTT.2005.845760

    7. Bieler, M., S. Seitz, M. Spitzer, G. Hein, K. Pierz, U. Siegner, M. A. Basu, A. J. A. Smith, and M. R. Harper, "Rise-time calibration of 50-GHz sampling oscilloscopes: Intercomparison between PTB and NPL," IEEE Trans. on Instrum. Meas., Vol. 56, No. 2, 266-270, 2007.
    doi:10.1109/TIM.2007.890609

    8. Ma, Z., H. Ma, P. Gong, C. Yang, and K. Feng, "Ultrafast optoelectronic technology for radio metrology applications," Journal of Systems Engineering and Electronics, Vol. 21, No. 3, 461-468, 2010.

    9. Lee, D. J. and J. F. Whitaker, "A simplified fabry-Pérot electro-optic modulation sensor," IEEE Phot. Tech. Lett., Vol. 20, No. 10, 866-868, 2008.
    doi:10.1109/LPT.2008.921127