Vol. 26
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-08-19
Fano Resonances in a Bilayer Structure Composed of Two Kinds of Dispersive Metamaterials
By
Progress In Electromagnetics Research Letters, Vol. 26, 49-57, 2011
Abstract
We theoretically find that a bi-layer structure composed of two kinds of dispersive metamaterials can possess an asymmetric reflection spectrum due to Fano-type interference between a discrete reflection resonance and a broadband strong reflection. The discrete reflection resonance appears at the frequency around which the dispersive permeability is near to zero at oblique incidence. Based on analytical and numerical analysis, the asymmetric factor in the Fano-type reflection is found to be linked with the angle of incidence.
Citation
Yanhong Liu, Haitao Jiang, Chunhua Xue, Wei Tan, Hong Chen, and Yun Long Shi, "Fano Resonances in a Bilayer Structure Composed of Two Kinds of Dispersive Metamaterials," Progress In Electromagnetics Research Letters, Vol. 26, 49-57, 2011.
doi:10.2528/PIERL11072205
References

1. Fano , U., "Effects of configuration interaction on intensities and phase shifts," Phys. Rev., Vol. 124, 1866-1878, 1961.
doi:10.1103/PhysRev.124.1866

2. Miroshnichenko, A. E., S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys., Vol. 82, 2257-2298, 2010.
doi:10.1103/RevModPhys.82.2257

3. Kobayashi , K., H. Aikawa, S. Katsumoto, and Y. Iye, "Mesoscopic Fano effect in a quantum dot embedded in an Aharonov-Bohm ring," Phys. Rev. B, Vol. 68, 235304, 2003.
doi:10.1103/PhysRevB.68.235304

4. Vassilios , V. and M. P. Hariton, "Fano resonance and persistent current in mesoscopic open rings: Influence of coupling and Aharonov-Bohm flux," Phys. Rev. B, Vol. 74, 235323, 2006.
doi:10.1103/PhysRevB.74.235323

5. Xiong , Y. J. and X. T. Liang, "Fano resonance and persistent current of a quantum ring," Phys. Lett. A, Vol. 330, 307-332, 2004.
doi:10.1016/j.physleta.2004.08.009

6. Fan, S. H., "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems," Appl. Phys. Lett., Vol. 80, 908-910, 2002.
doi:10.1063/1.1448174

7. Rybin , M. V., A. B. Khanikaev, M. Inoue, A. K. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, "Bragg scattering induces Fano resonance in photonic crystals," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 8, 86-93, 2010.
doi:10.1016/j.photonics.2009.07.003

8. Ruan, Z. and S. Fan, "Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle," J. Phys. Chem. C, Vol. 114, 7324-7329, 2009.
doi:10.1021/jp9089722

9. Chua, S. L., Y. D. Chong, A. D. Stone, M. Solja, and B. A. Jorge, "Low-threshold lasing action in photonic crystal slabs enabled by Fano resonances," Opt. Express, Vol. 19, 1540-1562, 2011.

10. Song , J. F., R. P. Zaccaria, M. B. Yu, and X. W. Sun, "Tunable Fano resonance in photonic crystal slabs," Opt. Express, Vol. 14, 8812-8826, 2006.
doi:10.1364/OE.14.008812

11. Rybin , M. V., A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, "Fano resonance between Mie and Bragg scattering in photonic crystals," Phys. Rev. Lett., Vol. 103, 023901, 2009.
doi:10.1103/PhysRevLett.103.023901

12. Hao, F., Y. Sonnefraud, P. van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, "Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance," Nano Lett., Vol. 8, 3983-3988, 2008.
doi:10.1021/nl802509r

13. Luk'yanchuk, B., I. Z. Nikolay, A. M. Stefan, J. H. Naomi, N. Peter, G. Harald, and T. C. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nature Materials, Vol. 9, 707-715, 2010.
doi:10.1038/nmat2810

14. Liu , N., T. Weiss, M. Mesch, and L. Langguth, "Planar metama-terial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett., Vol. 10, 1103-1107, 2010.
doi:10.1021/nl902621d

15. Menzel , C., C. Helgert, C. Rockstuhl, E. Kley, A. Tnnermann, T. Pertsch, and F. Lederer, "Asymetric transmission of linearly polarized light at optical metamaterials," Phys. Rev. Lett., Vol. 104, 253902, 2010.
doi:10.1103/PhysRevLett.104.253902

16. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

17. Zhang, , S., W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, "Midinfrared resonant magnetic nanostructures exhibiting a negative permeability," Phys. Rev. Lett., Vol. 94, 037402, 2005.
doi:10.1103/PhysRevLett.94.037402

18. Moerland , R. J., N. F. van Hulst, H. Gersen, and L. Kuipers, "Probing the negative permittivity perfect lens at optical frequencies using near-¯eld optics and single moleculedetection," Opt. Express, Vol. 13, 1604-1614, 2005.
doi:10.1364/OPEX.13.001604

19. Yen, T. J., W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science, Vol. 303, 1494-1496, 2004.
doi:10.1126/science.1094025

20. Alu , A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. Antennas Propagat., Vol. 51, 2558-2571, 2003.
doi:10.1109/TAP.2003.817553

21. Lin , W. H., C. J. Wu, T. J. Yang, and S. J. Chang, "Analysis of dependence of resonant tunneling on static positive parameters in a single-negative bilayer," Progress In Electromagnetics Research, Vol. 118, 151-165, Jan. 2011.
doi:10.2528/PIER11040202

22. Alu, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, 155410, 2007.
doi:10.1103/PhysRevB.75.155410

23. Yariv, A. and P. Yeh, Optical Waves in Crystals, Wiley, New York, 1984.