Vol. 26

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-08-19

Fano Resonances in a Bilayer Structure Composed of Two Kinds of Dispersive Metamaterials

By Yanhong Liu, Haitao Jiang, Chunhua Xue, Wei Tan, Hong Chen, and Yun Long Shi
Progress In Electromagnetics Research Letters, Vol. 26, 49-57, 2011
doi:10.2528/PIERL11072205

Abstract

We theoretically find that a bi-layer structure composed of two kinds of dispersive metamaterials can possess an asymmetric reflection spectrum due to Fano-type interference between a discrete reflection resonance and a broadband strong reflection. The discrete reflection resonance appears at the frequency around which the dispersive permeability is near to zero at oblique incidence. Based on analytical and numerical analysis, the asymmetric factor in the Fano-type reflection is found to be linked with the angle of incidence.

Citation


Yanhong Liu, Haitao Jiang, Chunhua Xue, Wei Tan, Hong Chen, and Yun Long Shi, "Fano Resonances in a Bilayer Structure Composed of Two Kinds of Dispersive Metamaterials," Progress In Electromagnetics Research Letters, Vol. 26, 49-57, 2011.
doi:10.2528/PIERL11072205
http://jpier.org/PIERL/pier.php?paper=11072205

References


    1. Fano , U., "Effects of configuration interaction on intensities and phase shifts," Phys. Rev., Vol. 124, 1866-1878, 1961.
    doi:10.1103/PhysRev.124.1866

    2. Miroshnichenko, A. E., S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys., Vol. 82, 2257-2298, 2010.
    doi:10.1103/RevModPhys.82.2257

    3. Kobayashi , K., H. Aikawa, S. Katsumoto, and Y. Iye, "Mesoscopic Fano effect in a quantum dot embedded in an Aharonov-Bohm ring," Phys. Rev. B, Vol. 68, 235304, 2003.
    doi:10.1103/PhysRevB.68.235304

    4. Vassilios , V. and M. P. Hariton, "Fano resonance and persistent current in mesoscopic open rings: Influence of coupling and Aharonov-Bohm flux," Phys. Rev. B, Vol. 74, 235323, 2006.
    doi:10.1103/PhysRevB.74.235323

    5. Xiong , Y. J. and X. T. Liang, "Fano resonance and persistent current of a quantum ring," Phys. Lett. A, Vol. 330, 307-332, 2004.
    doi:10.1016/j.physleta.2004.08.009

    6. Fan, S. H., "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems," Appl. Phys. Lett., Vol. 80, 908-910, 2002.
    doi:10.1063/1.1448174

    7. Rybin , M. V. , A. B. Khanikaev, M. Inoue, A. K. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, "Bragg scattering induces Fano resonance in photonic crystals," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 8, 86-93, 2010.
    doi:10.1016/j.photonics.2009.07.003

    8. Ruan, Z. and S. Fan, "Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle," J. Phys. Chem. C, Vol. 114, 7324-7329, 2009.
    doi:10.1021/jp9089722

    9. Chua, S. L., Y. D. Chong, A. D. Stone, M. Solja, and B. A. Jorge, "Low-threshold lasing action in photonic crystal slabs enabled by Fano resonances," Opt. Express, Vol. 19, 1540-1562, 2011.

    10. Song , J. F. , R. P. Zaccaria, M. B. Yu, and X. W. Sun, "Tunable Fano resonance in photonic crystal slabs," Opt. Express, Vol. 14, 8812-8826, 2006.
    doi:10.1364/OE.14.008812

    11. Rybin , M. V., A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, "Fano resonance between Mie and Bragg scattering in photonic crystals," Phys. Rev. Lett., Vol. 103, 023901, 2009.
    doi:10.1103/PhysRevLett.103.023901

    12. Hao, F. , Y. Sonnefraud, P. van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, "Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance," Nano Lett., Vol. 8, 3983-3988, 2008.
    doi:10.1021/nl802509r

    13. Luk'yanchuk, B., I. Z. Nikolay, A. M. Stefan, J. H. Naomi, N. Peter, G. Harald, and T. C. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nature Materials, Vol. 9, 707-715, 2010.
    doi:10.1038/nmat2810

    14. Liu , N. , T. Weiss, M. Mesch, and L. Langguth, "Planar metama-terial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett., Vol. 10, 1103-1107, 2010.
    doi:10.1021/nl902621d

    15. Menzel , C., C. Helgert, C. Rockstuhl, E. Kley, A. Tnnermann, T. Pertsch, and F. Lederer, "Asymetric transmission of linearly polarized light at optical metamaterials," Phys. Rev. Lett., Vol. 104, 253902, 2010.
    doi:10.1103/PhysRevLett.104.253902

    16. Pendry, J. B. , A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
    doi:10.1103/PhysRevLett.76.4773

    17. Zhang, , S., , W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, "Midinfrared resonant magnetic nanostructures exhibiting a negative permeability," Phys. Rev. Lett., Vol. 94, 037402, 2005.
    doi:10.1103/PhysRevLett.94.037402

    18. Moerland , R. J., N. F. van Hulst, H. Gersen, and L. Kuipers, "Probing the negative permittivity perfect lens at optical frequencies using near-¯eld optics and single moleculedetection," Opt. Express, Vol. 13, 1604-1614, 2005.
    doi:10.1364/OPEX.13.001604

    19. Yen, T. J. , W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science, Vol. 303, 1494-1496, 2004.
    doi:10.1126/science.1094025

    20. Alu , A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. Antennas Propagat., Vol. 51, 2558-2571, 2003.
    doi:10.1109/TAP.2003.817553

    21. Lin , W. H. , C. J. Wu, T. J. Yang, and S. J. Chang, "Analysis of dependence of resonant tunneling on static positive parameters in a single-negative bilayer," Progress In Electromagnetics Research, Vol. 118, 151-165, 2011.
    doi:10.2528/PIER11040202

    22. Alu, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, 155410, 2007.
    doi:10.1103/PhysRevB.75.155410

    23. Yariv, A. and P. Yeh, Optical Waves in Crystals, Wiley, New York, 1984.