Vol. 24

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Dual-Band Monopole Antenna with Omega Particles for Wireless Applications

By Michel Audrey Abaga Abessolo, Ahmed El Moussaoui, and Noura Aknin
Progress In Electromagnetics Research Letters, Vol. 24, 27-34, 2011


A new design of dual-band antenna for DCS/ PCS/ UMTS/ WLAN/ WiMAX applications is proposed. Using two metamaterials omega-shaped structures, a good impedance matching the dual-band mode is obtained. The proposed prototype antenna is fabricated on a 1.5mm thick FR4 epoxy substrate with a relative dielectric permittivity εr= 4.4, and loss tangent tanσ = 0.02. Good monopole-like radiation patterns and antenna gains over the operating bands have also been observed. Effects of each omega particle on the antenna performance and their coupling are all examined and discussed.


Michel Audrey Abaga Abessolo, Ahmed El Moussaoui, and Noura Aknin, "Dual-Band Monopole Antenna with Omega Particles for Wireless Applications," Progress In Electromagnetics Research Letters, Vol. 24, 27-34, 2011.


    1. Hwang, S.-H., J.-I. Moon, W.-I. Kwak, and S.-O. Park, "Printed compact dual band antenna for 2.4 and 5 GHz ISM band applications," Electron. Lett., Vol. 40, No. 25, 1568-1569, 2004.

    2. Cho, Y.-J., S.-H. Hwang, and S.-O. Park, "Printed antenna with folded non-uniform meander line for 2.4/5 GHz WLAN bands," Electron. Lett. , Vol. 41, No. 14, 786-788, 2005.

    3. Janapsatya, J., K. P. Esselle, and T. S. Bird, "A dual-band and wideband planar inverted-F antenna for WLAN applications," Microw. Opt. Techn. Lett., Vol. 50, No. 1, 138-141, 2008.

    4. Ang, I., Y. X. Guo, and Y. W. Chia, "Compact internal quad-band antenna for mobile phones," Micro. Opt. Technol. Lett., Vol. 38, No. 3, 217-223, 2003.

    5. Bhatti, R. A., N. A. Nguyen, V. A. Nguyen, and S. Park, "Design of a compact internal antenna for multi-band personal communication handsets," IEEE Proc. of Asia-Pacific Microw. Conf., 1-4, 2007.

    6. Jing, X., Z. Du, and K. Gong, "A compact multiband planar antenna for mobile handsets," IEEE Ant. and Wireless Prop., Vol. 5, 343-345, 2006.

    7. Chi, Y.-W. and K.-L.Wong, "Compact multiband folded loop chip antenna for small-size mobile phone," IEEE Trans. Ant. Prop., Vol. 56, No. 12, 3797-3803, 2008.

    8. Bulu, I., H. Caglayan, and E. Ozbay, "Experimental demonstration of subwavelength focusing of electromagnetic waves by labyrinth-based two-dimensional metamaterials," Opt. Lett., Vol. 31, No. 6, 2006.

    9. Duan, Z., S. Qu, and Y. Hou, "Electrically small antenna inspired by spired split ring resonator," Progress In Electromagnetics Research Letters, Vol. 7, 47-57, 2009.

    10. Braaten, B. D., R. P. Scheeler, M. Reich, R. M. Nelson, C. Bauer-Reich, J. Glower, and G. J. Owen, "Compact metamaterial-based UHF RFID antennas: Deformed omega and split-ring resonator structures," Aces Journal, Vol. 25, No. 6, 530-542, 2010.

    11. Alu, A., F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength, compact, resonant patch antennas loaded with metamaterials," IEEE Trans. Ant. Prop., Vol. 55, No. 1, 13-25, 2007.

    12. Velselago, V., "The electrodynamics of substances with simultane ously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 1968.

    13. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors, and enhanced," IEEE Trans. on Microwave Theory and Techniques, Vol. 47, No. 11, 1999.

    14. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.

    15. Ran, L.-X., H.-F. Jiang Tao, H. Chen, X.-M. Zhang, K.-S. Cheng, T. M. Grzegorczyk, and J. A. Kong, "Experimental study on several left-handed metamaterials," Progress In Electromagnetics Research, Vol. 51, 249-279, 2005.