Vol. 24

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-06-03

Achievable Transverse Cylindrical Electromagnetic Mode

By Rui Chen and Xijun Li
Progress In Electromagnetics Research Letters, Vol. 24, 59-68, 2011
doi:10.2528/PIERL11032907

Abstract

The system of Maxwell equations with an initial condition in a vacuum is solved in a cylindrical coordinate system. It derives the cylindrical transverse electromagnetic wave mode in which the electric field and magnetic field are not in phase. Such electromagnetic wave can generate and exist in actual application, and there is no violation of the law of conservation of energy during the electromagnetic field interchanges.

Citation


Rui Chen and Xijun Li, "Achievable Transverse Cylindrical Electromagnetic Mode," Progress In Electromagnetics Research Letters, Vol. 24, 59-68, 2011.
doi:10.2528/PIERL11032907
http://jpier.org/PIERL/pier.php?paper=11032907

References


    1. Maxwell, J. C. and A dynamical theory of the electromagnetic field, Phil. Trans. Roy. Soc. London, Vol. 155, 459-512, 1865.
    doi:10.1098/rstl.1865.0008

    2. Van Bladel, J., Electromagnetic Fields, McGraw-Hill, New York, 1964.

    3. Jackson, J. D. and Classical Electrodynamics, , 3rd Ed., John Wiley and Sons, 1998.

    4. Landau, L. D. and E. M. Lifshitz, The Classical Theory of Fields, Butterworth-Heinemann, 1980.

    5. Tsang, T., Classical Electrodynamics, World Scientific Pub. Co. Inc., 1997.

    6. Yang, R. R. G. and T. T. Y. Wong, Electromagnetic Fields and Waves, Higher Education Press, 2006.

    7. Harrington, R. F., "Time-harmonic Electromagnetic Fields," McGraw-Hill, 1961.

    8. Brittingham, J. N., "Focus waves modes in homogeneous Maxwell equations: Transverse electric mode," J. Appl. Phys., Vol. 54, 1179-1189, 2009.
    doi:10.1063/1.332196

    9. Chen, R., "The optimum differential equations," Chin. J. Engin. Math., Vol. 17, 82-86, 2000.
    doi:10.3901/CJME.2004.01.082

    10. Chen, R., "The uniqueness of the eigenvalue assemblage for optimum differential equations," Chin. J. Engin. Math., Vol. 20, 121-124, 2003.
    doi:10.3901/JME.2003.05.121

    11. Chen, R., "The problem of initial value for the plane transverse electromagnetic mode," Acta Phys. Sin-CH ED, Vol. 49, 2514-2518, 2000.

    12. Coleman, S. and D. Grischkowsky, "A THz transverse electro-magnetic mode two-dimensional interconnect layer incorporating quasi-optics," Appl. Phys. Lett., Vol. 83, 3656-3658, 2003.
    doi:10.1063/1.1624474

    13. Chu, C. and T. Ohkawa, "Transverse electromagnetic waves," Phys. Rev. Lett., Vol. 48, 837-838, 1982.
    doi:10.1103/PhysRevLett.48.837

    14. Davis, L. W. and G. Patsakos, "TM and TE electromagnetic beams in free space," Opt. Lett., Vol. 6, 22-23, 1981.
    doi:10.1364/OL.6.000022

    15. Chew, , W. C. and W. C. Weedon, "A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates," Micro. Opt. Tech. Lett., Vol. 7, 599-604, 1994.
    doi:10.1002/mop.4650071304

    16. Elliott, R. S., Electromagnetics --- History, Theory, and Applications, IEEE Press, New York, 1993.

    17. Karlsson, A. and G. Kristensson, "Constitutive relations, dissipation, and reciprocity for the Maxwell equations in the time domain," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 1-6, 537-551, 1992.

    18. Ruan, Z., M. Yan, C. W. Neff, and M. Qiu, "Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations," Phys. Rev. Lett., Vol. 99, 113903, 2007.
    doi:10.1103/PhysRevLett.99.113903

    19. Isic, G., R. Gajic, B. Novakovic, Z. Popovic, K. Hingerl, and , "Radiation and scattering from imperfect cylindrical electromagnetic cloaks," Opt. Express, Vol. 16, 1413-1422, 2008.
    doi:10.1364/OE.16.001413

    20. Naqvi, A., S. Ahmed, and Q. A. Naqvi, "Perfect electromagnetic conductor and fractional dual interface placed in a chiral nihility medium," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 1991-1999, 2010.

    21. Chen, H.-Y., L.-J. Deng, and P.-H. Zhou, "Suppression of surface wave from finite conducting surfaces with impedance loading at margins," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 1977-1989, 2010.

    22. Pinel, N., J. Saillard, and C. Bourlier, "Extension of the roughness criterion of a one-step surface to a one-step layer," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1195-1205, 2010.
    doi:10.1163/156939310791586043