Vol. 23

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-04-29

The Support Vector Machine for Dielectric Target Detection through a Wall

By Fang-Fang Wang and Ye-Rong Zhang
Progress In Electromagnetics Research Letters, Vol. 23, 119-128, 2011
doi:10.2528/PIERL11031106

Abstract

In this paper, a novel approach based on the support vector machine (SVM) for dielectric target detection in through-wall scenario is proposed. Through-wall detection is converted to the establishment and use of a mapping between backscattered data and the dielectric parameter of the target. Then the propagation effects caused by walls, such as refraction and speed change, are included in the mapping that can be regressed after SVM training process. The training and testing data for the SVM is obtained by finite-difference time-domain (FDTD) simulation. Numerical experiments show that once the training phase is completed, this technique only needs computational time in an order of seconds to predict the parameters. Besides, experimental results show that good consistency between the actual parameters and estimated ones is achieved. Through-wall target tracking is also discussed and the results are acceptable.

Citation


Fang-Fang Wang and Ye-Rong Zhang, "The Support Vector Machine for Dielectric Target Detection through a Wall," Progress In Electromagnetics Research Letters, Vol. 23, 119-128, 2011.
doi:10.2528/PIERL11031106
http://jpier.org/PIERL/pier.php?paper=11031106

References


    1. Ferris, D. D. and N. C. Currie, "Survey of current technologies for through-the-wall surveillance (TWS)," Proceedings of SPIE, 1999.

    2. Baranoski, E. J., "Through-wall imaging: Historical perspective and future directions," Journal of the Franklin Institute-Engineering and Applied Mathematics, Vol. 345, 556-569, 2008.
    doi:10.1016/j.jfranklin.2008.01.005

    3. Ahmad, F., G. J. Frazer, S. A. Kassam, and M. G. Amin, "Design and implementation of near-field, wideband synthetic aperture beamformers," IEEE Transactions on Aerospace and Electronic Systems, Vol. 40, 206-220, 2004.
    doi:10.1109/TAES.2004.1292154

    4. Ahmad, F., M. G. Amin, and S. A. Kassam, "Synthetic aperture beamformer for imaging through a dielectric wall," IEEE Transactions on Aerospace and Electronic Systems, Vol. 41, 271-283, 2005.
    doi:10.1109/TAES.2005.1413761

    5. Wang, G. Y. and M. G. Amin, "Imaging through unknown walls using different standoff distances," IEEE Transactions on Signal Processing, Vol. 54, 4015-4025, 2006.
    doi:10.1109/TSP.2006.879325

    6. Ahmad, F., M. G. Amin, and G. Mandapati, "Autofocusing of through-the-wall radar imagery under unknown wall characteristics," IEEE Transactions on Image Processing, Vol. 16, 1785-1795, 2007.
    doi:10.1109/TIP.2007.899030

    7. Soldovieri, F. and R. Solimene, "Through-wall imaging via a linear inverse scattering algorithm," IEEE Geoscience and Remote Sensing Letters, Vol. 4, 513-517, 2007.
    doi:10.1109/LGRS.2007.900735

    8. Song, L. P., C. Yu, and Q. H. Liu, "Through-wall imaging (TWI) by radar: 2-D tomographic results and analyses," IEEETransactions on Geoscience and Remote Sensing, Vol. 43, 2793-2798, 2005.
    doi:10.1109/TGRS.2005.857914

    9. Dehmollaian, M. and K. Sarabandi, "Refocusing through building walls using synthetic aperture radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, 1589-1599, 2008.
    doi:10.1109/TGRS.2008.916212

    10. Li, L. L., W. J. Zhang, and F. Li, "A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, 423-431, 2010.
    doi:10.1109/TGRS.2009.2024686

    11. Zhang, W., A. Hoorfar, and L. Li, "Through-the-wall target localization with time reversal music method," Progress In Electromagnetics Research, Vol. 106, 75-89, 2010.
    doi:10.2528/PIER10052408

    12. Bermani, E., A. Boni, S. Caorsi, and A. Massa, "An innovative real-time technique for buried object detection," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, 927-931, 2003.
    doi:10.1109/TGRS.2003.810928

    13. Bermani, E., A. Boni, S. Caorsi, M. Donelli, and A. Massa, "A multi-source strategy based on a learning-by-examples technique for buried object detection," Progress In Electromagnetics Research, Vol. 48, 185-200, 2004.
    doi:10.2528/PIER03110701

    14. Bermani, E., A. Boni, A. Kerhet, and A. Massa, "Kernels evaluation of SVM-based estimators for inverse scattering problems," Progress In Electromagnetics Research, Vol. 53, 167-188, 2005.
    doi:10.2528/PIER04090801

    15. Zhang, Q. H., B. X. Xiao, and G. Q. Zhu, "Inverse scattering by dielectric circular cylinder using support vector machine approach," Microwave and Optical Technology Letters, Vol. 49, 372-375, 2007.
    doi:10.1002/mop.22131

    16. Vapnik, V. N., The Nature of Statistical Learning Theory, Springer Verlag, 2000.

    17. Smola, A. J. and B. Scholkopf, "A tutorial on support vector regression," Statistics and Computing, Vol. 14, 199-222, 2004.
    doi:10.1023/B:STCO.0000035301.49549.88

    18. Kim, Y. and H. Ling, "Through-wall human tracking with multiple Doppler sensors using an artificial neural network," IEEE Transactions on Antennas and Propagation, Vol. 57, 2116-2122, 2009.
    doi:10.1109/TAP.2009.2021871

    19. Du, K. L., M. N. S. Swamy, and I. Ebrary, Neural Networks in a Softcomputing Framework, Springer, 2006.

    20. Massa, A., A. Boni, and M. Donelli, "A classification approach based on SVM for electromagnetic subsurface sensing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, 2084-2093, 2005.
    doi:10.1109/TGRS.2005.853186