Vol. 22

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-03-23

Narrowband Frequency Selective Surface Based on Substrate Integrated Waveguide Technology

By Hang Zhou, Shaobo Qu, Zhibin Pei, Jieqiu Zhang, Bao-Qin Lin, Jiafu Wang, Hua Ma, Chao Gu, Zhuo Xu, Peng Bai, and Wei-Dong Peng
Progress In Electromagnetics Research Letters, Vol. 22, 19-28, 2011
doi:10.2528/PIERL11022005

Abstract

In this paper, a novel narrowband frequency selective surface (FSS) with a stable performance based on substrate integrated waveguide technology is presented. The unit cell of the FSS consists of a double-sided metalized substrate with a circular hole and a SIW circular cavity. In this way, incident EM waves enter the circular cavity and excite a TM110 cavity resonance, leading to a narrow pass-band. The high-Q property of the TM110 cavity resonance provides a very good wide-angle and polarization-independent stability. Both the simulation and experimental results show that such narrowband FSS owes its advantages to high selectivity, low profile stable performance with various incident angles and different polarizations, which is suitable for impulse detections, narrow-band communications, electronic countermeasures, etc.

Citation


Hang Zhou, Shaobo Qu, Zhibin Pei, Jieqiu Zhang, Bao-Qin Lin, Jiafu Wang, Hua Ma, Chao Gu, Zhuo Xu, Peng Bai, and Wei-Dong Peng, "Narrowband Frequency Selective Surface Based on Substrate Integrated Waveguide Technology," Progress In Electromagnetics Research Letters, Vol. 22, 19-28, 2011.
doi:10.2528/PIERL11022005
http://jpier.org/PIERL/pier.php?paper=11022005

References


    1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
    doi:10.1002/0471723770

    2. Luebbers, R. J. and B. A. Munk, "Some effects of dielectric loading on periodic slot arrays," IEEE Trans. Antennas Propag., Vol. 26, No. 4, 536-542, Jul. 1978.
    doi:10.1109/TAP.1978.1141887

    3. Baena, J. D., L. Jelinek, R. Marques, J. J. Mock, J. Gollub, and D. R. Smith, "Isotropic frequency selective surfaces made of cubic resonators," Appl. Phys. Lett., Vol. 91, 191105, 2007.
    doi:10.1063/1.2806915

    4. Wakabayashi, H., M. Kominami, H. Kusaka, and H. Nakashima, "Numerical simulations for frequency-selective screens with complementary elements," IEE Proc. --- Micro. Antennas Propag., Vol. 141, No. 6, 477-482, 1994.
    doi:10.1049/ip-map:19941322

    5. Lockyers, D. S., J. C. Vardaxpglou, and R. A. Simpkin, "Complementary frequency selective surfaces," IEE Proc. --- Micro. Antennas Propag., Vol. 147, No. 6, 501-507, 2000.
    doi:10.1049/ip-map:20000799

    6. Hu, X.-D., X.-L. Zhou, L.-S. Wu, L. Zhou, and W.-Y. Yin, "A miniaturized dual-band frequency selective surface (FSS) with closed loop and its complementary pattern," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1374-1377, 2009.

    7. Sarabandi, K. and N. Behdad, "A frequency selective surface with miniaturized elements," IEEE Trans. Antennas Propag., Vol. 55, No. 5, 1239-1245, 2007.
    doi:10.1109/TAP.2007.895567

    8. Bayatpur, F. and K. Sarabandi, "Single-layer, high-order, miniaturized element requency selective surfaces," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 4, 774-781, Apr. 2008.
    doi:10.1109/TMTT.2008.919654

    9. Chiu, C.-N. and K.-P. Chang, "A novel miniaturized-element frequency selective surface having a stable resonance," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1175-1177, 2009.
    doi:10.1109/LAWP.2009.2034766

    10. Bayatpur, F. and K. Sarabandi, "Miniaturized FSS and patch antenna array coupling for angle-independent, high-order spatial filtering," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 2, 79-81, 2010.
    doi:10.1109/LMWC.2009.2038517

    11. Luo, G. Q., et al., "Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology," IEEE Trans. Antennas Propag., Vol. 53, No. 12, 4035-4043, Dec. 2005.
    doi:10.1109/TAP.2005.860010

    12. Luo, G. Q., W. Hong, Q. H. Lai, K. Wu, and L. L. Sun, "Design and experimental verification of compact frequency-selective surface with quasi-elliptic bandpass response-," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 12, 2481-2487, 2007.
    doi:10.1109/TMTT.2007.910085

    13. Luo, G. Q., W. Hong, H. J. Tang, J. X. Chen, and L. L. Sun, "Triband frequency selective with periodic cell perturbation," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 6, 2007.
    doi:10.1109/LMWC.2007.897793

    14. Yang, H.-Y., S.-X. Gong, P.-F. Zhang, and Y. Guan, "Compound frequency selective surface with quasi-elliptic bandpass response," Electron. Lett., Vol. 45, No. 1, 2010.

    15. Lima, A. C. De C. and E. A. Parker, "Narrow bandpass single layer frequency selective surfaces," Electron. Lett., Vol. 29, No. 8, 1993.
    doi:10.1049/el:19930475

    16. Lockyer, D. S. and J. C. Vardaxoglou, "Reconfigurable FSS response from two layers of slotted dipole arrays," Electron. Lett., Vol. 32, No. 6, 1996.
    doi:10.1049/el:19960370

    17. Parker, E. A. and A. Stanley, "Dual-polarized narrow-bandpass frequency-selective surfaces," Microw. Opt. Techn. Lett., Vol. 13, 105-107, 1996.
    doi:10.1002/(SICI)1098-2760(19961005)13:2<105::AID-MOP15>3.0.CO;2-A

    18. Mohammad Amjadi, S. and M. Soleimani, "Design of band-pass waveguide filter using frequency selective surfaces loaded with surface mount capcitors based on split-field update FDTD method," Progress In Electromagnetics Research B, Vol. 3, 271-281, 2008.
    doi:10.2528/PIERB07122402

    19. Zhang, J.-C., Y.-Z. Yin, and J.-P. Ma, "Design of narrow band-pass frequency selective surface for millimeter wave applications," Progress In Electromagnetics Research, Vol. 96, 287-298, 2009.
    doi:10.2528/PIER09081702

    20. Zhang, Y. L., W. Hong, K. Wu, J. X. Chen, and H. J. Tang, "Novel substrate integrated waveguide cavity filter with defected ground structure," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 2005.

    21. Medina, F., F. Mesa, and R. Marqus, "Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 12, 3108-3120, 2008.
    doi:10.1109/TMTT.2008.2007343

    22. Medina, F., F. Mesa, J. A. Ruiz-Cruz, J. M. Rebollar, and J. R. Montejo-Garai, "Study of extraordinary transmission in a circular waveguide System ," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 6, 1532-1542, 2010.
    doi:10.1109/TMTT.2010.2048254

    23. Kontogeorgos, A. A., D. P. korfiatis, K. A. T. Thoma, and J. C. Vardaxoglou, "plasma generation in silicon based inductive grid arrays," Optics and Lasers in Engineering, Vol. 47, No. 11, 1195-1198, 2009.
    doi:10.1016/j.optlaseng.2009.06.006

    24. Doumanis, E. T., J. C. Vardaxoglou, D. P. Korfilatis, and K. A. T. Thoma, "Integrated Schottky-contact in 2-layer inductive grid array," The Second European Conference on Antennas and Propagation, 1-6, 2007.