Vol. 23
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-04-19
C-Band Pulsed Solid State Power Amplifier for Spaceborne Applications
By
Progress In Electromagnetics Research Letters, Vol. 23, 75-87, 2011
Abstract
The basic applications of pulsed solid state power amplifier are for airborne and spaceborne pulsed Radar and these applications have always demanded well performance over different environmental conditions. The success of the electronic systems for these applications relies on the ability to design high performance; reliable and high yield circuits, which will function against the demanded environmental specifications. This paper describes the detailed design and development of a spaceborne C-band pulsed solid state power amplifier to deliver 12-watt output power, 45 dB gain with 22 microsecond pulse width and 8% duty cycle. The salient features of this paper are drain modulated pulse driver circuit design, non-linear design of the power stages and electronic package design. The paper also describes pulsed SSPA configuration, RF section, Electronic Power Converter Module, RF design and other space aspects to realize the pulsed solid state power amplifier. It is fabricated on the three-layer metallized alumina substrate, and integrated with power converter module; and tested under simulated space environment. The test result validates the design specification of the pulsed solid state power amplifier, implemented at miniaturized configuration.
Citation
Jolly Dhar, S. K. Garg, Raj Kumar Arora, B. V. Bakori, and S. S. Rana, "C-Band Pulsed Solid State Power Amplifier for Spaceborne Applications," Progress In Electromagnetics Research Letters, Vol. 23, 75-87, 2011.
doi:10.2528/PIERL11020907
References

1. Yi, H. and S. Hang, "Design of L-band high speed pulsed power amplifier using LDMOS FET," Progress In Electromagnetics Research M, Vol. 2, 153-165, 2008.
doi:10.2528/PIERM08032805

2. Boger, W., et al. "X-band 17watt SSPA for space applications," IEEE MTT-S International on Microwave Symposium Digest, 2005.

3. Scappaviva, F., et al. "10watt high efficiency gaas mmic power amplifier for space applications," European on Microwave Integrated Circuit Conference, EuMIC, 2008.

4. Czech, J., A.-M. Khilla, and M. Schunzel, "A 10watt C-band GaAs FET power amplifier for satellite down-link communications systems," 14th European Microwave Conference, 1984.

5. Rector Robert, M., "Solid state microwave power amplifier,", Patent # WO 2007146052, December 21, 2007.

6. Dhar, J., S. K. Garg, R. K. Arora, B. V. Bakori, and S. S. Rana, "Space borne C-band pulsed solid state power amplifier," IEEE Applied Electromagnetics Conference, AEMC, 2009.

7. Dhar, J., S. K. Garg, R. K. Arora, and S. S. Rana, "Performance enhancement of pulsed solid state power amplifier using drain modulation over gate modulation," IEEE ISSCS 2009 Proceeding, 1-4, July 9-10, 2009.

8. Cripps, S. C., Advanced Techniques in RF Power Amplifier Design, Artech House, Norwood, MA, 2002.

9. Golio, M. and J. Golio, The RF and Microwave Circuits, Measurements and Modeling, CRC Press, New York, 2008.

10. Dhar, J., S. K. Garg, R. K. Arora, and S. S. Rana, "Nonlinear design of a C-band power amplifier using EEHEMT nonlinear model," IEEE ISSCS 2007 Proceeding, Vol. 1, 89-92, 2007.

11. Dhar, J., S. K. Garg, R. K. Arora, and S. S. Rana, "Nonlinear model based power amplifier," IEEE Applied Electromagnetics Conference, AEMC, 2009.

12. Dhar, J., R. K. Arora, A. Dasgupta, and S. S. Rana, "Enclosure effect on microwave power amplifier," Progress In Electromagnetics Research C, Vol. 19, 163-177, 2011.

13. Ansoft High Frequency Structure Simulator and Version 10, , User's Manual.

14. Allan, W. Scott, Cooling of Electronic Equipment, John Wiley & Sons..