Vol. 17
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-09-08
A Novel Small-Size Single Patch Microstrip Antenna Based on Koch and Sierpinski Fractal-Shapes
By
Progress In Electromagnetics Research Letters, Vol. 17, 95-103, 2010
Abstract
A novel fractal structure using Koch and Sierpinski fractal-shapes is proposed. By inserting the Sierpinski carpets into the single patch and etching the inner and outer patch edges according to Koch curves, the resonant frequency of the patch antenna can be lowered significantly. And the higher of the iteration order of the fractal shapes, the lower the resonant frequency becomes. In this paper, a novel small-size single patch microstrip antenna based on the proposed fractal-shapes is designed, fabricated and measured. It is experimentally found that the size reduction can reach 80.3%. Compared to the conventional square single patch antenna, the proposed antenna maintains comparable radiation patterns. Therefore, the small-size single patch microstrip antenna considered here can be applied to portable wireless communication systems requiring small devices.
Citation
Zhong-Wu Yu, Guang-Ming Wang, Xiang-Jun Gao, and Ke Lu, "A Novel Small-Size Single Patch Microstrip Antenna Based on Koch and Sierpinski Fractal-Shapes," Progress In Electromagnetics Research Letters, Vol. 17, 95-103, 2010.
doi:10.2528/PIERL10062803
References

1. Desclos, L., "Size reduction of patch by means of slots insertion," Microwave and Optical Technology Letters, Vol. 25, No. 2, 111-113, 2000.
doi:10.1002/(SICI)1098-2760(20000420)25:2<111::AID-MOP8>3.0.CO;2-S

2. Reed, S., L. Desclos, C. Terret, and S. Toutain, "Patch antenna size reduction by means of inductive loads," Microwave and Optical Technology Letters, Vol. 29, No. 2, 79-81, 2001.
doi:10.1002/mop.1089

3. Lin, Y. D. and T. Itoh, "Frequency-scanning antenna using the crosstieoverlay slow-wave structures as transmission line," IEEE Trans. on Antennas Propagation, Vol. 39, 377-380, 1991.
doi:10.1109/8.76337

4. Kim, J.-H., I.-K. Kim, J.-G. Yook, and H.-K. Park, "A slow-wave structure with Koch fractal slot loops," Microwave and Optical Technology Letters, Vol. 34, No. 2, 87-88, 2002.
doi:10.1002/mop.10381

5. Wong, K.-L., Compact and Broadband Microstrip Antennas, Wiley, New York, 2002.
doi:10.1002/0471221112.ch4

6. Desclos, L., Y. Mahe, S. Reed, G. Poilasne, and S. Toutain, "Patch antenna size reduction by combining inductive loading and short-points technique," Microwave and Optical Technology Letters, Vol. 30, No. 6, 385-386, 2001.
doi:10.1002/mop.1322

7. Chen, W.-L. and G.-M. Wang, "Small size edge-fed sierpinski carpet microstrip patch antennas," Progress In Electromagnetics Research C, Vol. 3, 195-202, 2008.
doi:10.2528/PIERC08050302

8. Kim, I.-K., J.-G. Yook, and H.-K. Park, "Fractal-shape small size microstrip antenna," Microwave and Optical Technology Letters, Vol. 34, No. 1, 15-17, 2002.
doi:10.1002/mop.10359

9. Anguera, J., C. Puente, C. Borja, R. Montero, and J. Solder, "Small and high-directivity bow-tie patch antenna based on the Sierpinski fractal," Microwave and Optical Technology Letters, Vol. 31, No. 3, 239-241, 2001.
doi:10.1002/mop.1407

10. Chen, W. L., G. M. Wang, and C. X. Zhang, "Small-size microstrip patch antennas combining koch and sierpinski fractal-shapes," IEEE Antennas Wireless Propagation Letters, Vol. 7, 738-741, 2008.
doi:10.1109/LAWP.2008.2002808

11. Tsachtsiris, G., C. Soras, M. Karaboikis, and V. Makios, "A reduced size fractal rectangular curve patch antenna," IEEE Electromagnetic Compatibility International Symposium, 2003.

12. Hoefer, W. J. R., "Equivalent series inductivity of a narrow transverse slit in microstrip," IEEE Trans. Microwave Theory Tech., Vol. 25, 822-824, 1977.
doi:10.1109/TMTT.1977.1129220