Vol. 15

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-06-11

Omnidirectional Horizontally Polarized Antenna with EBG Cavity for Gain Enhancement

By Huan-Huan Xie, Yong-Chang Jiao, Li-Na Chen, and Fu-Shun Zhang
Progress In Electromagnetics Research Letters, Vol. 15, 79-87, 2010
doi:10.2528/PIERL10042207

Abstract

An omnidirectional horizontally polarized antenna with improved gain is realized by using EBG cavity. The EBG cavity is composed of ring metallic strips etched on thin FR4 substrate and two metallic reflectors installed on up/down sides, which is designed to have a low effective index of refraction (n<1). The metallic strips are arranged in concave shape. Compared with the antenna without EBG cavity, the EBG cavity makes the vertical beam become narrow and effectively improves the omnidirectional antenna gain. An experimental prototype is fabricated to validate the proposed analysis. Measured data show the gain of the antenna with the EBG cavity improved by about 2.72 dBi at 5.7 GHz, and the measured data have a good agreement with numerical results.

Citation


Huan-Huan Xie, Yong-Chang Jiao, Li-Na Chen, and Fu-Shun Zhang, "Omnidirectional Horizontally Polarized Antenna with EBG Cavity for Gain Enhancement," Progress In Electromagnetics Research Letters, Vol. 15, 79-87, 2010.
doi:10.2528/PIERL10042207
http://jpier.org/PIERL/pier.php?paper=10042207

References


    1. Alù, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, 155410(1)-155410(13), Apr. 2007.

    2. Ziolkowski, R. W., "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Phys. Rev. E, Vol. 70, 046608(1)-046608(12), Oct. 2004.

    3. Silveirinha, M. and N. Engheta, "Tunneling of electromagnetic energy through subwavelength channels and bends using near-zero-materials," Phys. Rev. Lett., Vol. 97, 157403(1)-157403(4), Oct. 2006.

    4. Lovat, G., P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, "Analysis of directive radiation from a line source in a metamaterial slab with low permittivity," IEEE Trans. Antennas and Propagation, Vol. 54, 1017-1030, Mar. 2006.
    doi:10.1109/TAP.2006.869925

    5. Xin, H. and R. Zhou, "Low-effective index of refraction medium using metallic wire array," IEEE AP-S Int. Symp. Dig., 2530-2533, Jun. 2007.

    6. Zhou, R., H. Zhang, and H. Xin, "Experimental demonstration of narrow beam monopole antenna embedded in low effective index of refraction (n < 1) wire medium," Microwave and Optical Technology Letters, Vol. 50, No. 9, 2341-2345, Sep. 2008.
    doi:10.1002/mop.23653

    7. Zhou, R., H. Zhang, and H. Xin, "Metallic wire array as low-effective index of refraction medium for directive antenna application," IEEE Trans. Antennas and Propagation, Vol. 58, No. 1, 79-87, Jun. 2010.
    doi:10.1109/TAP.2009.2036282

    8. Boutayeb, H., T. A. Denidni, K. Mahdjoubi, A. C. Tarot, A. R. Sebak, and L. Talbi, "Analysis and design of a cylindrical EBG-based directive antenna," IEEE Trans. Antennas and Propagation, Vol. 54, No. 1, 211-219, Jan. 2006.
    doi:10.1109/TAP.2005.861560

    9. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, 4773-4776, Jun. 1996.
    doi:10.1103/PhysRevLett.76.4773

    10. Ghanem, F., G. Y. Delisle, T. A. Denidni, and K. Ghanem, "A directive dual-band antenna based on metallic electromagnetic crystals," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 384-387, 2006.
    doi:10.1109/LAWP.2006.881917

    11. Ahn, C. H., S. W. Oh, and K. Chang, "A dual-frequency omnidirectional antenna for polarization diversity of MIMO and wireless communication applications," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 966-969, 2009.
    doi:10.1109/LAWP.2009.2030135

    12. Ansoft Corporation [Online], Available: http://www.ansoft.com/products/hf/hfss/,.

    13. Pozar, D. M., Microwave Engineering, 3rd Ed., No. 1, John Wiley & Sons, Inc., 2005.