Vol. 14
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-05-05
Compact Quintuple-Mode UWB Bandpass Filter with Good Out-of-Band Rejection
By
Progress In Electromagnetics Research Letters, Vol. 14, 111-117, 2010
Abstract
In this paper, a novel compact quintuple-mode UWB bandpass filter (BPF) with sharp rejection skirt and wide upper-stopband performances is realized using stub-loaded multiple-mode resonator (MMR). The proposed resonator is formed by attaching two pairs of circular impedance-stepped open stubs in shunt and a pair of short-circuited stubs to high impedance microstrip line. By simply adjusting the radius of circular impedance-stepped open stubs and the lengths of short-circuited stubs, the first five resonant modes of the resonator can be roughly allocated within the 3.1--10.6 GHz UWB band meanwhile the high resonant modes in the upper-stopband can be suppressed. The short stubs in pairs can generate two transmission zeros near the lower and upper cut-off frequencies, leading to sharper rejection skirt outside the desired passband. Finally, a quintuple-mode UWB BPF is designed and fabricated, and the measured results demonstrate the feasibility of the design process.
Citation
Hong-Wei Deng, Yong-Jiu Zhao, Xue-Shun Zhang, Lu Zhang, and Si-Ping Gao, "Compact Quintuple-Mode UWB Bandpass Filter with Good Out-of-Band Rejection," Progress In Electromagnetics Research Letters, Vol. 14, 111-117, 2010.
doi:10.2528/PIERL10030912
References

1. Ishida, H. and K. Araki, "Design and analysis of UWB bandpass filter," Proc. IEEE Topical Conf. Wireless Comm. Tech., 457-458, Oct. 2003.

2. Hsu, C. L., F.-C. Hsu, and J. T. Kuo, "Microstrip bandpass ¯lters for ultra-wideband (UWB) wireless communications," IEEE MTT-S Int. Dig., 679-682, Jun. 2005.

3. Chen, H. and Y.-X. Zhang, "A novel and compact UWB bandpass filter using microstrip fork-form resonators," Progress In Electromagnetics Research, Vol. 77, 273-280, 2007.
doi:10.2528/PIER07082302

4. Naghshvarian-Jahromi, M. and M. Tayarani, "Miniature planar UWB bandpass filters with circular slots in ground," Progress In Electromagnetics Research Letters, Vol. 3, 83-97, 2008.

5. An, J., G.-M. Wang, W.-D. Zeng, and L.-X. Ma, "UWB filter using defected ground structure of von koch fractal shape slot," Progress In Electromagnetics Research Letters, Vol. 6, 61-66, 2009.
doi:10.2528/PIERL08121309

6. Hsiao, P.-Y. and R.-M. Weng, "Compact open-loop UWB filter with notched band," Progress In Electromagnetics Research Letters, Vol. 7, 149-159, 2009.
doi:10.2528/PIERL09022501

7. Zhu, L., S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 11, 796-798, Nov. 2005.

8. Sun, S. and L. Zhu, "Capacitive-ended interdigital coupled lines for UWB bandpass filters with improved out-of-band performances," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 8, 440-442, Aug. 2006.
doi:10.1109/LMWC.2006.879492

9. Chiou, Y.-C., J.-T. Kuo, and E. Cheng, "Broadband quasi-Chebyshev bandpass filters with multimode stepped-impedance resonators (SIRs)," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 8, 3352-3358, Aug. 2006.
doi:10.1109/TMTT.2006.879131

10. Wong, S. W. and L. Zhu, "EBG-embedded multiple-mode resonator for UWB bandpass filter with improved upper-stopband performance," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 6, 421-423, Jun. 2007.
doi:10.1109/LMWC.2007.897788

11. Wong, S. W. and L. Zhu, "Quadruple-mode UWB bandpass filter with improved out-of-band rejection," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 3, 152-154, Mar. 2009.
doi:10.1109/LMWC.2009.2013735

12. Yao, B. Y., Y. G. Zhou, Q. S. Cao, and Y. C. Chen, "Compact UWB bandpass filter with improved upper-stopband performance," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 1, 27-29, Jan. 2009.
doi:10.1109/LMWC.2008.2008558