Vol. 12
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-11-28
Ultra-Wideband Metamaterial Filter Based on Electroinductive-Wave Coupling Between Microstrips
By
Progress In Electromagnetics Research Letters, Vol. 12, 141-150, 2009
Abstract
In this work, we analyse the frequency response of microstrip lines coupled by complementary split ring resonators (CSRRs) etched on the ground plane supporting electroinductive waves (EIWs). The single-particle configurations demonstrate the principle of operation whose bandwidths reach 67% of the central frequency. A double configuration is afterwards investigated as a further improvement of the filtering response, such as the level of the spurious lower frequency band. Finally, an ultimate prototype comprising different CSRRs along the access line, together with the aforementioned EIW-coupling is proposed for filtering undesired higher bands. Experimental results confirm numerical analysis.
Citation
Miguel Navarro-Cia, Joss Miguel Carrasco, Miguel Beruete, and Francisco J. Falcone, "Ultra-Wideband Metamaterial Filter Based on Electroinductive-Wave Coupling Between Microstrips," Progress In Electromagnetics Research Letters, Vol. 12, 141-150, 2009.
doi:10.2528/PIERL09102106
References

1. Solymar, L. and E. Shamonina, Waves in Metamaterials, Oxford University Press, New York, 2009.

2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

3. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, "Babinet principle applied to metasurface and metamaterial design," Phys. Rev. Lett., Vol. 93, No. 12, 197491-1-197491-4, 2004.

4. Marqués, R., F. Martín, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications, John Wiley and Sons, New York, 2008.

5. Jarauta, E., M. A. G. Laso, T. Lopetegi, F. Falcone, M. Beruete, J. D. Baena, J. Bonache, I. Gil, J. García-García, J. A. Marcotegui, F. Martín, R. Marqués, and M. Sorolla, "Novel microstrip backward coupler with metamaterial cells for fully planar fabrication techniques," Microw. Opt. Tech. Lett., Vol. 48, No. 7, 1205-1209, 2006.
doi:10.1002/mop.21579

6. Navarro-Cía, M., F. Falcone, M. Beruete, I. Arnedo, J. Illescas, J. A. Marcotegui, M. A. G. Laso, and T. Lopetegi, "Left-handed behaviour in a microstrip line loaded with squared split-ring resonators and an EBG pattern," Microw. Opt. Tech. Lett., Vol. 49, No. 11, 2689-2692, 2007.
doi:10.1002/mop.22841

7. Beruete, M., F. Falcone, M. J. Freire, R. Marqés, and J. D. Baena, "Electroinductive waves in chains of complementary metamaterial elements," Appl. Phys. Lett., Vol. 88, No. 8, 083503-1-083503-3, 2006.
doi:10.1063/1.2176850

8. Navarro-Cía, M., M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, "Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms," Opt. Express, Vol. 17, No. 20, 18184-18195, 2009.
doi:10.1364/OE.17.018184

9. Martin, F., F. Falcone, J. Bonache, R. Marqués, and M. Sorolla, "Miniaturized coplanar waveguide stop band filters based on multiple tuned split ring resonators," IEEE Microw. Wirel. Comp. Lett., Vol. 13, No. 12, 511-513, 2003.
doi:10.1109/LMWC.2003.819964