Vol. 12
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-10-03
Method for Broadening the Beamwidths of Crossed Dipole for Wideband Marine GPS Applications
By
Progress In Electromagnetics Research Letters, Vol. 12, 31-40, 2009
Abstract
In this paper, a method to broaden the beamwidths of a crossed dipole antenna is proposed. By introducing four parasitic strips around the crossed dipole antenna, the beamwidths of the crossed dipole antenna in the vertical plane are broadened effectively, making the patterns uniform over a wide frequency band. An L-band prototype, operating in the frequency range from 1.1 GHz to 1.6 GHz, is fabricated and tested. The simulated and measured results show that the beamwidths at lower frequencies are broadened and uniform radiation patterns over the whole operating frequency band are obtained, making the crossed dipole suitable for wideband marine GPS (Global Positioning System) applications.
Citation
Yun-Fei Wei, Bao-Hua Sun, Chao Shi, Shi-Gang Zhou, Wei-Ji Huang, and Qi-Zhong Liu, "Method for Broadening the Beamwidths of Crossed Dipole for Wideband Marine GPS Applications," Progress In Electromagnetics Research Letters, Vol. 12, 31-40, 2009.
doi:10.2528/PIERL09090303
References

1. Shumaker, P. K., C. H. Ho, and K. B. Smith, "Printed half-wavelength quadrifilar helix antenna for GPS marine applications," Electronics Letters, Vol. 32, No. 3, Feb. 1996.
doi:10.1049/el:19960129

2. Florian, P. and D. Loffler W. Wiesbeck, "A broadband, ship based, electronically steered L-band SATCOM antenna," Antennas and Propagation Society International Symposium, Vol. 2, 456-459, Jun. 22-27, 2003.

3. Mall, L. and R. B. Waterhouse, "Simple, small antenna terminal for maritime satellite communications," Electronic Letters, Vol. 40, No. 11, 2004.
doi:10.1049/el:20040462

4. Panahi, S. S., A. Manuel, and S. Ventosa, "Stability and power consumption tests for time base selection of an ocean bottom seismometer (OBS)," 49th IEEE International Midwest Symposium on Circuits and Systems, Vol. 2, 323-326, Aug. 2006.
doi:10.1109/MWSCAS.2006.382277

5. Gaer, M. C., R. P. Gilbert, and Y. S. Xu, "Analytical methods for acoustic seabed exploration," Challenges of Our Changing Global Environment Conference Proceedings IEEE, Vol. 1, 214-220, Oct. 1995.

6. Kuga, Y., J. Cha, and J. A. Ritcey, "Mechanically steerable antennas using dielectric phase shifters," IEEE Antennas and Propagation Society International Symposium, Vol. 1, 161-164.

7. Geissler, M., F. Woetzel, M. Bottcher, S. Korthoff, A. Lauer, M. Eube, and R. Gieron, "Innovative phased array antenna for maritime satellite communications," 3rd European Conference on Antennas and Propagation, 735-739, Mar. 2009.

8. Milligan, T. A., Modern Antenna Design, 2nd Ed., John Wiley & Sons Inc., Hoboken, New Jersey, 2005.

9. Yin, W. Y. and L. W. Li, "Radiation patterns of a dipole antenna array on bianisotropic substrates with a soft- and hard-surface: The clari¯cation of the continuous magnetic group of symmetry," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 9, 1173-1189, 1999.
doi:10.1163/156939399X01447

10. Chen, X. and K. Huang, "Wideband properties of fractal bowtie dipoles," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 11, 1511-1518, 2006.
doi:10.1163/156939306779274345

11. Zhou, H. J., Q. Z. Liu, J. F. Li, and J. L. Guo, "A swallow-tailed wideband planar monopole antenna with semi-elliptical base," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 9, 1257-1264, 2007.

12. Shams, K. M. Z., M. Ali, and H. S. Hwang, "A planar inductively coupled bow-tie slot antenna for WLAN application," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 861-871, 2006.
doi:10.1163/156939306776149879

13. Anagnostou, D. E., G. Zheng, S. E. Barbin, M. T. Chryssomallis, J. Papapolymerou, and C. G. Christodoulou, "An X-band reconfigurable planar dipole antenna," IEEE MTT International Microwave and Optoelectronics Conf., 654-656.

14. Scire-Scappuzzo, F. and S. N. Makarov, "A low-multipath wideband GPS antenna with cutoff or non-cutoff corrugated ground plane," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 1, 33-46, Jan. 2009.
doi:10.1109/TAP.2008.2009655

15. Lange, J., "Interdigitated stripline quadrature hybrid," IEEE Trans. Microw. Theory Tech., Vol. 17, No. 12, 1150-1151, Dec. 1969.
doi:10.1109/TMTT.1969.1127115

16. Andrews, D. P. and C. S. Aitchison, "Wide-band lumped element quadrature 3-dB couplers in microstrip," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 12, 2424-2431, Dec. 2000.
doi:10.1109/22.898993

17. HFSS: High Frequency Structure Simulator V. 11 based on the Finite Element Method, Ansoft Corporation.

18. Eldek, A. A., "Design of double dipole antenna with enhanced usable bandwidth for wideband phased array applications," Progress In Electromagnetics Research, Vol. 59, 1-15, 2006.
doi:10.2528/PIER06012001

19. Li, B., K.-J. Lee, H.-T. Chou, and W. Gu, "A polarization compensation approach utilizing a paraboloid photonic-crystal structure for crossed-dipole excited reflector antennas," Progress In Electromagnetics Research, Vol. 85, 393-408, 2008.
doi:10.2528/PIER08081703

20. Joardar, S. and A. B. Bhattacharya, "Uniform gain power-spectrum antenna-pattern theorem and its possible applications," Progress In Electromagnetics Research, Vol. 77, 97-110, 2007.
doi:10.2528/PIER07080102

21. Heidari, A. A., M. Heyrani, and . Nakhkash, "A dual-band circularly polarized stub loaded microstrip patch antenna for GPS applications," Progress In Electromagnetics Research, Vol. 92, 195-208, 2009.
doi:10.2528/PIER09032401