Vol. 12
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-10-05
Competitive Algorithm of Simulating Natural Tree Growth and Its Application in Antenna Design
By
Progress In Electromagnetics Research Letters, Vol. 12, 41-48, 2009
Abstract
A novel Competitive Algorithm of Simulating Natural Tree Growth is presented in this paper. It searches from a simple status to complex ones and is characterized by quick convergence. The algorithm has been used to design a novel tree-shaped antenna which has an appreciably larger gain of 2\,dBi more than traditional dipole antenna with a reflector of the same size. A prototype antenna has been fabricated and tested. A good agreement between the calculated and measured results verifies the feasibility of the algorithm.
Citation
Bo Lu, Junjun Zhang, and Ka-Ma Huang, "Competitive Algorithm of Simulating Natural Tree Growth and Its Application in Antenna Design," Progress In Electromagnetics Research Letters, Vol. 12, 41-48, 2009.
doi:10.2528/PIERL09082402
References

1. Kadri, B. and F. T. Bendimered, "Linear antenna synthesis with a fuzzy genetic algorithm," Proc. Eurocon 2007 --- The International Conference on ``Computer as a Tool", IEEE, 942-947, Sep. 2007.
doi:10.1109/EURCON.2007.4400530

2. Santarelli, S. and T. L. Yu, "Military antenna design using simple and competent genetic algorithms," Mathematical and Computer Modelling, Vol. 43, No. 9-10, 990-1022, May 2006.
doi:10.1016/j.mcm.2005.05.024

3. Sathi, V., C. Ghobadi, and J. Nourinia, "Optimization of circular ring microstrip antenna using genetic algorithm," International Journal of Infrared and Millimeter Waves, Vol. 29, No. 10, 897-905, Oct. 2008.
doi:10.1007/s10762-008-9382-5

4. Abdelaziz, A. A. and H. A. Kamal, "Sector synthesis of antenna array using genetic algorithm," Frequenz, Vol. 62, No. 1, 12-15, 2008.

5. Weile, D. S. and E. Michielssen, "The control of adaptive antenna arrays with genetic algorithms using dominance and diploidy," EEE Trans. Antennas Propag., Vol. 49, No. 10, 1424-1433, Oct. 2001.
doi:10.1109/8.954931

6. Mani, V. V. and R. Bose, "Genetic algorithm based smart antenna design for UWB beamforming," IEEE International Conference on Ultra-Wideband, ICUWB, 442-446, 2008.

7. Boeringer, D. W. and D. H. Werner, "A simultaneous parameter adaptation scheme for genetic algorithms with application to phased array synthesis," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 356-371, 2005.
doi:10.1109/TAP.2004.838800

8. Xu, Z., H. Li, Q.-Z. Liu, and J.-Y. Li, "Pattern synthesis of conformal antenna array by the hybrid genetic algorithm," Progress In Electromagnetics Research, Vol. 79, 75-90, 2008.
doi:10.2528/PIER07091901

9. Mahanti, G. K., A. Chakrabarty, and S. Das, "Phase-only and amplitude-phase only synthesis of dual-beam pattern linear antenna arrays using floating-point genetic algorithms," Progress In Electromagnetics Research, Vol. 68, 247-259, 2007.
doi:10.2528/PIER06072301

10. Sijher, T. S. and A. A. Kishk, "Antenna modeling by infinitesimal dipoles using genetic algorithms," Progress In Electromagnetics Research, Vol. 52, 225-254, 2005.
doi:10.2528/PIER04081801

11. Guo, G. W. and K. M. Huang, "Competition algorithm of natural tree growth and its application in curve fitting," J. Computational and Theoretical Nanoscience, Vol. 4, No. 7-8, 1301-1304, 2007.
doi:10.1166/jctn.2007.015

12. Kraus, J. D. and R. J. Marhefka, Antennas, 3rd Ed., 277-281, McGraw-Hill, New York, 2003.