Vol. 11
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-09-21
Influence of Disorder on a Chirped Mirror Based on Porous Silicon
By
Progress In Electromagnetics Research Letters, Vol. 11, 159-165, 2009
Abstract
We report on the modeling of light reflection in disordered chirped mirrors with a photonic band gap in the visible. The stop band limits have a threshold-like behavior as a function of disorder and sustain a certain amount of disorder before changing. We determine the disorder value that leads to a substantial broadening of the total reflection range.
Citation
Jesus Manzanares-Martinez, Paola Castro-Garay, and Efrain Urrutia-Banuelos, "Influence of Disorder on a Chirped Mirror Based on Porous Silicon," Progress In Electromagnetics Research Letters, Vol. 11, 159-165, 2009.
doi:10.2528/PIERL09080206
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059, 1987.
doi:10.1103/PhysRevLett.58.2059

2. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals, Princeton University Press, Princeton, 1995.
doi:10.1063/1.2786596

3. Palestino, A. G., M. B. de la Mora, J. A. del Rio, C. Gergely, and E. Perez, "Porous silicon mirrors with enlarged omnidirectional band gap," Appl. Phys. Lett., Vol. 91, 121909, 2007.
doi:10.1063/1.1559420

4. Agarwal, V. and J. A. del Rio, "Tailoring the photonic band gap of porous silicon dielectric mirror," Appl. Phys. Lett., Vol. 82, 1512, 2003.

5. Agarwal, V. and J. A. del Rio, "Filters, mirrors and microcavities from porous silicon," Int. J. of Mod. Phys. B, Vol. 20, No. 99, 2006.
doi:10.1103/PhysRevLett.92.097401

6. Agarwal, V., J. A. del Rio, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, "Photonic bloch oscillations in porous silicon optical superlattices," Phys. Rev. Lett., Vol. 92, 097401, 2004.
doi:10.1063/1.1866497

7. Xifré-Perez, E., L. F. Marsal, J. Pallares, and J. Ferre-Borrull, "Porous silicon mirrors with enlarged omnidirectional band gap," J. Appl. Phys., Vol. 97, 064503, 2005.
doi:10.1103/PhysRevB.56.15264

8. Cazzanelli, M. and L. Pavesi, "Time-resolved photoluminescence of all-porous-silicon microcavities," Phys. Rev. B, Vol. 56, 15264, 1997.
doi:10.1016/j.optmat.2008.01.016

9. Ishikura, N., M. Fujii, K. Nishida, S. Hayashi, J. Diener, M. Mizuhata, and S. Deki, "Broadband rugate filters based on porous silicon," Optical Materials, Vol. 31, 102, 2008.

10. Yeh, P., Optical Waves in Layered Media, Wiley, New York, 1988.

11. Bush, K., S. Lolkes, R. B. Wehrspohn, and H. Foll, Photonic Crystals, Wiley, Weinheim, 2004.
doi:10.1163/156939309787604643

12. Wu, C. J., B. H. Chu, and M. T. Weng, "Analysis of optical reflection in a chirped distributed bragg reflector," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 129-138, 2009.
doi:10.1163/156939309787612365

13. Wu, C.-J., B.-H. Chu, M.-T. Weng, and H.-L. Lee, "Enhancement of bandwith in a chirped quarter-wave dielectric mirror," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 437-447, 2009.
doi:10.1103/PhysRevB.72.195101

14. Sozuer, H. S. and K. Sevim, "Robustness of one-dimensional photonic band gaps under random variations of geometrical parameters," Phys. Rev. B, Vol. 72, 195101, 2005.
doi:10.1103/PhysRevB.66.165215

15. Astratov, V. N., A. M. Adawi, S. Fricker, M. S. Skolnick, D. M. Whittaker, and P. N. Pusey, "Interplay of order and disorder in the optical properties of opal photonic crystals," Phys. Rev. B, Vol. 66, 165215, 2002.

16. Kaliteevski, M. A., J. Manzanares-Martinez, D. Cassagne, and J. P. Albert, "Disorder-induced modification of the transmission of light in a two-dimensional phtonic crystal," Phys. Rev. B, Vol. 66, 11301, 2002.