Vol. 10
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-08-27
Ultra-Wideband and Miniaturization of the Conventional Inset Feed Microstrip Patch with Modified Ground Plane for Wireless Applications
By
Progress In Electromagnetics Research Letters, Vol. 10, 171-184, 2009
Abstract
In this paper, ultra-wideband and miniaturization, technique for the microstrip monopole patch antenna (MMPA) in wireless applications is presented. Ultra-wideband was achieved by using Printed modified ground plane on a dielectric substrate with 50­ microstrip feed line. This technique allows the bandwidth of the MMPA to be ultra-wideband with satisfactory radiation properties and reduce the antenna size. The proposed antenna with modified ground plane provides an mpedance bandwidth (S11 < -10 dB) more than 5.5 GHz corresponding to 116% of fundamental resonant frequency with reduction in antenna size by 20% from original size. For further improvement in antenna characteristics, electromagnetic band-gap (EBG) structure is used. The surface wave was suppressed so the antenna bandwidth was increased to be 3--11 GHz corresponding to 170%, and the antenna size was reduced 43% of its original size. Two types of EBG are used. Holes are drilled around the patch, and embedded circular patches of the electromagnetic band-gap structure with suitable dimension are used. Details of the proposed antenna design have been described, and the typical experimental results are presented and discussed. Commercial software high frequency structure simulator (HFSS®) version 11 was used for the antenna design.
Citation
Dalia Mohammed Nasha Elsheakh, Hala Elsadek, Esmat A. F. Abdallah, Magdy F. Iskander, and Hadia Elhenawy, "Ultra-Wideband and Miniaturization of the Conventional Inset Feed Microstrip Patch with Modified Ground Plane for Wireless Applications," Progress In Electromagnetics Research Letters, Vol. 10, 171-184, 2009.
doi:10.2528/PIERL09061104
References

1. Ray, K. P., Y. Ranga, and P. Gabhale, "Printed square monopole antenna with semicircular base for ultra-wide bandwidth," Electronics Letters, Vol. 43, 13-14, 2007.
doi:10.1049/el:20073932

2. John, M. and M. J. Ammann, "Spline-based geometry for printed monopole antennas," Electronics Letters, Vol. 43, 7-8, 2007.
doi:10.1049/el:20073802

3. Liang, J., C. C. Chiau, X. Chen, and C. G. Parini, "Study of a printed circular disc monopole antenna for UWB systems," IEEE Trans. on Antennas and Propag., Vol. 53, 3500-3504, 2005.
doi:10.1109/TAP.2005.858598

4. Wu, Q., R. Jin, J. Geng, and J. Lao, "Ultra-wideband rectangular disk monopole antenna with notched ground," Electronics Letters, Vol. 43, 605-606, 2007.
doi:10.1049/el:20070910

5. Liu, Z. D., P. S. Hall, and D.Wake, "Dual-frequency planar invert-F antenna," IEEE Trans. on Antennas and Propag., Vol. 45, 1451-1457, 1997.
doi:10.1109/8.633849

6. Kan, H. R. and R. B. Waterhouse, "Size reduction techniques for shorted patches," Electronics Letters, Vol. 35, 948-949, 1999.
doi:10.1049/el:19990703

7. Nashaat, D., H. Elsadek, and H. Ghali, "Broad band U-shaped PlFA with dual band capability for bluetooth and WLAN applications," Proceedings of IEEE International Symposium on Antenna and Propagation, Vol. 4, No. 1, January 2005.

8. Elsadek, H. and D. M. Nashaat, "Multiband and UWB V-shaped antenna configuration for wireless communications applications," IEEE Antenna and Wireless Propagation Letters, Vol. 7, 2008.

9. Brown, E. R., C. D. Parker, and E. Yablonovitch, "Radiation properties of a planar antenna on a photonic-crystal substrate," Opt. Soc. Amer. B, Vol. 10, No. 2, 404-407, February 1993.
doi:10.1364/JOSAB.10.000404

10. Matthew, M. B., B. B. John, O. E. Henry, et al. "Two dimensional photonic crystals fabry-perror resonators with loss dielectrics," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 11, 2085-2090, November 1999.

11. Gonzalo, R., P. Maaget, and M. Sorolla, "Enhanced patch antenna performance by suppressing surface waves using photonic band-gap substrates," IEEE Transaction on Microwave Theory and Techniques, Vol. 47, No. 11, 2131-2138, November 1999.
doi:10.1109/22.798009

12. Mosallei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Trans. on Antennas and Propag., Vol. 52, No. 9, September 2004.

13. Hao, Y. and C. G. Paini, "Isolation enhancement of anisotropic UC-PBG microstrip diplexer patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 1, 135-137, 2002.
doi:10.1109/LAWP.2002.806757

14. Nashaat, D., H. A. Elsadek, E. Abdallah, H. Elhenawy, and M. F. Iskander, "Enhancement of ultra-wide bandwidth of microstrip monopole antenna by using metamaterial structures," IEEE Antenna and Wireless Propagation Letters, submitted, 2009.