Vol. 8

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-05-27

Brillouin Fiber Laser with Significantly Reduced Gain Medium Length Operating in L-Band Region

By Sharife Shahi, Sulaiman Wadi Harun, Kaharudin Dimyati, and Harith Ahmad
Progress In Electromagnetics Research Letters, Vol. 8, 143-149, 2009
doi:10.2528/PIERL09032501

Abstract

Brillouin fiber laser (BFL) is demonstrated using a piece of photonic crystal fiber (PCF) in conjunction with a Bismuth-based erbium-doped fiber (Bi-EDF) as the gain media with a simple ring resonator. The proposed BFL operates at wavelength of 1574.08 nm, which is 0.08 nm shifted from the Brillouin pump wavelength with a maximum peak power of 8 dBm. The BFL has a side mode suppression ratio and 3 dB bandwidth of approximately 23 dB and 0.02 nm respectively limited by the optical spectrum analyzer resolution. The BFL is also stable at room temperature and compact due to the use of only 20 m long of PCF and 215 cm long of Bi-EDF.

Citation


Sharife Shahi, Sulaiman Wadi Harun, Kaharudin Dimyati, and Harith Ahmad, "Brillouin Fiber Laser with Significantly Reduced Gain Medium Length Operating in L-Band Region," Progress In Electromagnetics Research Letters, Vol. 8, 143-149, 2009.
doi:10.2528/PIERL09032501
http://jpier.org/PIERL/pier.php?paper=09032501

References


    1. Agrawal, G. P., Nonlinear Fiber Optics, 2nd Ed., 370-403, Academic, San Diego, California, 1995.

    2. Chraplyvy, A. R., "Limitations in lightwave communications imposed by optical-fiber nonlinearities," J. Lightwave Technol., Vol. 10, 1548-1557, 1990.
    doi:10.1109/50.59195

    3. Rich, T. C. and D. A. Pinnow, "Evaluation of fiber optical waveguides using Brillouin spectroscopy," Appl. Opt., Vol. 13, 1376-1378, 1974.
    doi:10.1364/AO.13.001376

    4. Tateda, M., T. Horiguchi, T. Kurashima, and K. Ishihara, "First measurement of strain distribution along field-installed optical fibers using Brillouin spectroscopy," J. Lightwave Technol., Vol. 8, 1269-1272, 1990.
    doi:10.1109/50.59150

    5. Kurashima, T., T. Horiguchi, and M. Tateda, "Distributed temperature sensing using stimulated Brillouin scattering in optical silica fibers," Opt. Lett., Vol. 15, 1038-1040, 1990.
    doi:10.1364/OL.15.001038

    6. Ferreira, M. F., J. F. Rocha, and J. L. Pinto, "Analysis of the gain and noise characteristics of fiber Brillouin amplifiers," Opt. Quantum Electron., Vol. 26, 34-44, 1994.
    doi:10.1007/BF00573899

    7. Shen, G.-F., X.-M. Zhang, H. Chi, and X.-F. Jin, "Microwave/Millimeter-wave generation using multi-wavelength photonic crystal fiber brillouin laser," Progress In Electromagnetics Research, Vol. 80, 307-320, 2008.
    doi:10.2528/PIER07112202

    8. Smith, S. P., F. Zarinetchi, and S. Ezekiel, "Narrow-linewidth stimulated Brillouin fiber laser and applications," Opt. Lett., Vol. 16, 393-395, 1991.
    doi:10.1364/OL.16.000393

    9. Zarinetchi, F., S. P. Smith, and S. Ezekiel, "Stimulated Brillouin fiberoptic laser gyroscope," Opt. Lett., Vol. 16, 229-231, 1991.
    doi:10.1364/OL.16.000229

    10. Bjarklev, A., J. Broeng, and A. S. Bjarklev, Photonics Crystal Fibres, Kluwer Academic Publishers, 2003.

    11. Lee, J. H., Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, "Investigation of Brillouin effects in small-core holey optical fiber: Lasing and scattering," Opt. Lett., Vol. 27, 927-929, 2002.
    doi:10.1364/OL.27.000927

    12. Yang, X., X. Dong, S. Zhang, F. Lu, X. Zhou, and C. Lu, "Multiwavelength erbium-doped fiber laser with 0.8-nm spacing using sampled Bragg grating and photonic crystal fiber," IEEE Photonics Technol. Lett., Vol. 17, 2538-2540, 2005.
    doi:10.1109/LPT.2005.858076