Vol. 8
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-04-17
High Power Electromagnetic Transient Pulse in-Phase Synthesis
By
Progress In Electromagnetics Research Letters, Vol. 8, 19-24, 2009
Abstract
PCSS low jitter trigger can reach 65 ps in the condition of high bias electric under the non-liner mode [1-5]; high power transient pulse can be gained by virtue of it. The high power transient pulse in-phase characteristic and other tenets are verified by testing axial electric field strength and axial energy density, which is energy per area at the antenna main radiation direction. In the experiment, axial electric field strength and energy density of antenna array measured in different conditions indicate that axial electric field strength is proportional to the number of antenna elements and the energy density is proportional to the square of the number of radiation units, which means the transient electromagnetic pulses could synthesize in phase perfectly.
Citation
Guang-Yan Liu, Lian-Hong Zhang, and Hong-Chun Yang, "High Power Electromagnetic Transient Pulse in-Phase Synthesis," Progress In Electromagnetics Research Letters, Vol. 8, 19-24, 2009.
doi:10.2528/PIERL09021803
References

1. Yang, H.-C. and C.-L. Ruan, "Study of linear GaAs saturation parameters," Chinese Science Bulletin, Vol. 13, No. 53, 2008.

2. Kelkar, K. S., N. E. Islam, and C. M. Fessler, "Silicon carbide photoconductive switch for high-power, linear-mode operations through sub-band-gap triggering," Journal of Applied Physics, Vol. 98, No. 9, 3102-3106, 2005.
doi:10.1063/1.2126158

3. Ma, K., R. Uratra, D. A. B. Miller, et al. "Low-temperature growth of GaAs on Si used for ultrafast photoconductive switches," IEEE Journal of Quantum Electronics, Vol. 40, No. 6, 800-804, 2004.
doi:10.1109/JQE.2004.828234

4. Mar, A., G. M. Louberiel, F. J. Zutarvern, et al. "Fireset applications of improved longevity optically activated GaAs photoconductive semiconductor switches," IEEE Pulsed Power Plasma Science, Vol. 1, 166-169, 2002.

5. Louberiel, G. M., J. F. Aurand, G. J. Dension, et al., "Optically-activated GaAs switches for ground penetrating radar and firing set applications," IEEE Pulsed Power Conference, Vol. 2, 673-676, 1999.

6. Agostino, F., C. Gennarelli, G. Riccio, and C. Savarese, "Theoretical foundations of near-field-far-field transformations with spiral scannings," Progress In Electromagnetics Research, Vol. 61, 193-214, 2006.
doi:10.2528/PIER06021401

7. Choi, W., J. M. Kim, J. H. Bee, and C. Pyo, "High gain and broadband microstrip array antenna using combined structure of corporate and series feeding," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 2484-2487, 2004.

8. Mouhamadou, M., P. Armand, P. Vaudon, and M. Rammal, "Interference supression of the linear antenna arrays controlled by phase with use of sqp algorithm," Progress In Electromagnetics Research, Vol. 59, 251-265, 2006.
doi:10.2528/PIER05100603

9. Mouhamadou, M., P. Vaudon, and M. Rammal, "Null steering and multi-user beamforming by phase control," Progress In Electromagnetics Research, Vol. 60, 95-106, 2006.
doi:10.2528/PIER05112801

10. Mukerji, S. K., G. K. Singh, S. K. Goel, and S. Manuja, "A theoretical study of electromagnetic transients in a large conducting plate due to current impact excitation," Progress In Electromagnetics Research, Vol. 76, 15-29, 2007.
doi:10.2528/PIER07052901

11. Mukerji, S. K. and G. K. Singh, "A theoretical study of electromagnetic transients in a large plate due to voltage impact excitation," Progress In Electromagnetics Research, Vol. 78, 377-392, 2008.
doi:10.2528/PIER07091302

12. Yang, H. C. and L. C. Ruan, "Line element antenna array beam-scanning study," Electronics and Information Technology, Vol. 25, No. 3, 427-732, 2003.

13. Schoenberg, J. S. H., J. W. Burger, and J. S. Tyo, "Ultra-wideband source using gallium arsenide photoconductive semiconductor switches," Transactions on Plasma Science, Vol. 25, No. 2, 327-334, Apr. 1997.
doi:10.1109/27.602507

14. Buttram, M., "Some future directions for repetitive pulsed power," IEEE Transactionson Electron Devices, Vol. 30, No. 1, 262-266, Feb. 2002.