Vol. 6
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-02-05
Bidirectional High Gain Antenna for WLAN Applications
By
Progress In Electromagnetics Research Letters, Vol. 6, 99-106, 2009
Abstract
A bidirectional high gain four-element printed dipole array for WLAN (2.4/5.8 GHz) applications is analyzed and successfully implemented in this paper. Each element used is a double-side printed dipole fed with a balance twin-lead transmission line. A wide-band balun is implemented for the dipole array. Both simulated and measured data are pretty matched. According to the measured results, the bandwidth with return loss less than -10 dB is about 280 MHz (2250-2530 MHz) and 510 MHz (5470-5980 MHz) in the two operating bands, the measured gain for 2.4 GHz band is between 4.5 and 5.9 dB, and 6.1-8.9 dB for 5.8 GHz respectively. Good shaped patterns have also been attained by tuning parameters of the dipole array.
Citation
Xi Li, Lin Yang, Shu-Xi Gong, and Yan-Jiong Yang, "Bidirectional High Gain Antenna for WLAN Applications," Progress In Electromagnetics Research Letters, Vol. 6, 99-106, 2009.
doi:10.2528/PIERL08122601
References

1. Tong, K. F., K. Li, T. Matsui, and M. Izutsu, "Wideband coplanar waveguide fed coplanar patch antenna," IEEE Antennas and Propagation Society International Symposium, 406-409, 2001.

2. Wilkinson, W., "A class of printed circuit antennas," IEEE Antennas Propagat. Symp. Dig., 270-274, 1974.

3. Chen, H. M., J. M. Chen, P. S. Cheng, and Y. F. Lin, "Feed for dual-band printed dipole antenna," Electron. Lett., Vol. 40, 1320-1322, 2004.
doi:10.1049/el:20046360

4. Suh, S. Y., A. E. Waltho, L. Krishnamurthy, D. Souza, S. Gupta, H. K. Pan, and V. K. Nair, "A miniaturized dual-band dipole antenna with a modified meander line for laptop computer application in 2.5 and 5.5GHz WLAN band," IEEE Antennas and Propagation Society International Symposium, 2617-2620, 2006.

5. Zhang, Z., M. F. Iskander, J. C. Langer, and J. Mathews, "Dual-band WLAN dipole antenna using an internal matching circuit," IEEE Trans. Antennas Propagat., Vol. 53, 1813-1818, 2005.
doi:10.1109/TAP.2005.846784

6. Su, S. W. and J. H. Chou, "Low cost flat metal-plate dipole antenna for 2.4/5-GHz WLAN operation," Microw. Opt. Tech. Lett., Vol. 50, 1686-1687, 2008.
doi:10.1002/mop.23461

7. Liu, W. C., "Optimal design of dual band CPW-fed G-shaped monopole antenna for WLAN application," Progress In Electromagnetics Research, Vol. 74, 21-38, 2007.
doi:10.2528/PIER07041401

8. Wu, Y. J., B. H. Sun, J. F. Li, and Q. Z. Liu, "Triple-band omni-directional antenna for WLAN application," Progress In Electromagnetics Research, Vol. 76, 477-484, 2007.
doi:10.2528/PIER07080601

9. Wang, F. J. and J. S. Zhang, "Wide band cavity-baked ," Progress In Electromagnetics Research, Vol. 74, 39-46, 2007.
doi:10.2528/PIER07041801

10. Ren, W., "Compact dual-band slot antenna for 2.4/5GHz WLAN applications," Progress In Electrimagnetics Research B, Vol. 8, 319-327, 2008.
doi:10.2528/PIERB08071406

11. Gao, J. P., X. X. Yang, J. S. Zhang, and J. X. Xiao, "A printed volcano smoke antenna for UWB and WLAN communications," Progress In Electromagnetics Research Letters, Vol. 4, 55-61, 2008.
doi:10.2528/PIERL08051102

12. Jolani, F., A. M. Dadgarpour, and H. R. Hassani, "Compact M-slot folded patch antenna for WLAN," Progress In Electromagnetics Research Letters, Vol. 3, 35-42, 2008.
doi:10.2528/PIERL08012801

13. Wu, T. Y., S. T. Fcing, and K. L. Wong, "Printed monopole array antenna for WLAN operation in the 2.4/5.2/5.8GHz bands," Microwave. Opt. Technol. Lett., Vol. 37, 370-373, 2003.
doi:10.1002/mop.10921

14. Lin, C. C., C. M. Su, F. R. Hsiao, and K. L.Wong, "Printed folded dipole array antenna with directional radiation for 2.4/5GHz WLAN operation," Electron. Lett., Vol. 39, No. 24, 2003.
doi:10.1049/el:20031136

15. Gans, M., D. Kajfez, and V. H. Rumsey, "Frequency independent baluns," Proc. IEEE, 647-648, 1965.
doi:10.1109/PROC.1965.3963