Vol. 5
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-11-19
Reserch on the Coherent Phase Noise of Millimeter-Wave Doppler Radar
By
Progress In Electromagnetics Research Letters, Vol. 5, 23-34, 2008
Abstract
The phase noise is a very important index to wireless system, especially in millimeter-wave continuous wave radar systems. The phase noise of the signal, which is firstly leaked from transmitter and then mixed to intermediate frequency band by the local oscillator (Tx-IF), will worsen the sensitivity of supper heterodyne radar system used for Doppler velocity detection. In this paper, the coherent analysis is applied on the phase noise after nonlinear process, which shows that the phase noise of the Tx-IF is affected by those factors: the magnitude of the phase noise of the transmitter and that of the local oscillator, and the correlationship between each other. In practice, by reducing the phase noise of the transmitter and that of the local oscillator and ameliorating the correlationship of the two phase noises, the phase noise of the Tx-IF can be improved greatly. Such proposition is successfully applied in the design of a millimeter-wave Doppler radar working at 95 GHz. The experimental measurement shows that the sensitivity of this radar is better than -70 dBm.
Citation
Tao Wu, Xiaohong Tang, and Fei Xiao, "Reserch on the Coherent Phase Noise of Millimeter-Wave Doppler Radar," Progress In Electromagnetics Research Letters, Vol. 5, 23-34, 2008.
doi:10.2528/PIERL08101802
References

1. Mead, J. B. and R. E. McIntosh, "Millimeter-wave polarimetric radars," Progress In Electromagnetics Research, Vol. 03, 391-450, 1990.

2. Costanzo, S., I. Venneri, G. Di Massa, and G. Amendola, "Hybrid array antenna for broadband millimeter-wave applications," Progress In Electromagnetics Research, Vol. 83, 173-183, 2008.
doi:10.2528/PIER08051404

3. Ma, H. H., X. H. Tang, F. Xiao, and X. J. Zhang, "Phase noise analysis and estimate of millimeter wave PLL frequency synthesizer," International Journal of Infrared and Millimeter Waves, Vol. 26, No. 2, 271-278, Feb. 2005.
doi:10.1007/s10762-005-3005-1

4. Zhang, Y. H., Y. Fan, and Z. D. Wu, "Phase noise in millimeter wave phase-locked loop with mixer," International Journal of Infrared and Millimeter Waves, Vol. 28, 299-304, Mar. 2007.
doi:10.1007/s10762-007-9203-2

5. Grebenkemper, C. J., "Local oscillator phase noise and its effect on receiver performance," WJ Tech. Notes 1981, 1-13, 1981.

6. Razavi, B., "A study of phase noise in CMOS oscillators," IEEE Journal of Solid-State Circuits, Vol. 31, No. 3, 331-343, 1996.
doi:10.1109/4.494195

7. Raven, R. S., "Requirements on master oscillators for coherent radar," IEEE Proceedings, Vol. 54, No. 2, 237-243, Feb. 1966.
doi:10.1109/PROC.1966.4636

8. Pozar, D. M., Microwave Engineering, 594-595, 3rd edition, John Wiley & Sons, Inc., 2003.

9. Taylor, J. R., An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 290-291, University Science Books, 1997.

10. Jaisingh, L. R., Statistics for the Utterly Confused, 104-107, McGraw-Hill Professional, 2006.

11. Leeson, D. B., "A simple model of feedback oscillator noise spectrum," Proc. IEEE, Vol. 54, 329-330, Feb. 1966.
doi:10.1109/PROC.1966.4682

12. Hajimiri, A. and T. H. Lee, "A general theory of phase noise in electrical oscillators," IEEE Journal of Solid-State Circuits, Vol. 33, 179-194, Feb. 1998.
doi:10.1109/4.658619

13. Lee, T. H. and A. Hajimiri, "Oscillator phase noise: A tutorial," IEEE Journal of Solid-State Circuits, Vol. 35, 326-336, Mar. 2000.
doi:10.1109/4.826814

14. Demir, A., A. Mehrotra, and J. Roychowdhury, "Phase noise in oscillators: A unifying theory and numerical methods for characterization," IEEE Trans. Circuits Syst., Vol. I47, 655-674, May 2000.

15. Vanassche, P., G. Gielen, and E. Sansen, "Efficient analysis of slow-varying oscillator dynamics," IEEE Trans. Circuits Syst., Vol. I51, 1457-1467, Aug. 2004.