Vol. 3
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-02-28
Novel Ku Band Fan Beam Reflector Back Array Antenna
By
Progress In Electromagnetics Research Letters, Vol. 3, 95-103, 2008
Abstract
In this paper, a Ku band fan beam reflector back array antenna is introduced. This is made up of two main parts that are planar array and main reflector. The proposed antenna has dimensions of 103.3×27.5×12mm3 including the reflector. This antenna with high gain for incorporating in Ku band radars at 13.4-14 GHz is described. The fan beam radiation patterns with monopolar characteristics i.e., the cross-polarization is at least 10 dB lower than the co-polarization and are obtained in the frequency band of interest. The maximum gain for proposed antenna is 16.6 dBi at 13.75 GHz and the peak gain generally >16 dBi throughout the frequency band of interest.
Citation
Mahdi Naghshvarianjahromi, "Novel Ku Band Fan Beam Reflector Back Array Antenna," Progress In Electromagnetics Research Letters, Vol. 3, 95-103, 2008.
doi:10.2528/PIERL08021503
References

1. Schena, V. and F. Ceprani, "FIFTH project solutions demonstrating new satellite broadband communication system for high speed train," Vehicular Technology Conf., Vol. 5, 2831-2835, May 2004.

2. Monk, A., et al. "An ultra-low profile airborne reflector antenna subsystem for broadband satellite communications," 21st AIAA Int. Communications Satellite Systems Conf. and Exhibit AIAA, 2003-2316, Yokohama, Japan, Apr. 15–19, 2003.

3. Eom, S. Y., S. H. Son, Y. B. Jung, S. I. Jeon, S. A. Ganin, A. G. Shubov, A. K. Tobolev, and A. V. Shishlov, "Design and test of a mobile antenna system with tri-band operation for broadband satellite communications and DBS reception," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 11, 3123-3133, November 2007.
doi:10.1109/TAP.2007.908819

4. Densmore, A. and V. Jamnejad, "A satellite-tracking K- and Kaband mobile vehicle antenna system," IEEE Trans. Veh. Technol., Vol. 42, No. 4, 502-513, Nov. 1993.
doi:10.1109/25.260761

5. Inasawa, Y., S. Kuroda, K. Kusakabe, I. Naito, and Y. Konishi, "Aeronautical ultra-low-profile reflector antenna designed by physical optics shaping technique," IEICE Society Conf., C-1-5, Tokushima, Japan, Sep. 21–24, 2004 (in Japanese).

6. Wakana, H., et al. "COMETS for Ka-band and millimeter-wave advanced mobile satellite communications and 21 GHz advanced satellite broadcasting experiments," Proc. IEEE Int. Conf. on Communications, Vol. 1, 79-83, Jun. 1998.

7. Lee, H., Y. H. Kim, V. A. Volkov, R. V. Kozhin, D. M. Vavriv, and T. S. Kim, "35 GHz compact radar using fan beam antenna array for obstacle detection," Electronics Letters, Vol. 43, No. 25, December 6, 2007.

8. Young, J. and L. Peter, "A brief history of GPR fundamentals and applications," Proc. 6th Int. Conf. Ground Penetrating Radar, 5-14, 1996.

9. Kim, I. K., K. S. Yang, S. Pinel, and J. Laskar, "Slot array antennas fed by integrated wave guide on liquid crystal polymer for V-band wireless LAN application," Proceedings of Asia-Pacific Microwave Conference, 2006.

10. Daniels, D. J., "Surface-penetrating radar," IEE Radar Sonar Navigation Avionics, Series 6, 72-93, IEEE Press, 1996.

11. Skolnik, M. I., Introduction to Radar Systems, McGraw-Hill, New York, 1980.

12. Jameses, J. R. and P. S. Hall, Handbook of Microstrip Antennas, Vol. 1, Peter Peregrinus & IEEE, London, 1989.

13. Ansoft High Frequency Structure Simulation (Ansoft HFSSTM V 10.0), Ansoft Corporation, 2005.

14. CST MICROWAVE STUDIO v5.0, Computer Simulation Technology, 2003.