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System of Material Objects in Electrodynamic Volumes

Mikhail V. Nesterenko*, Victor A. Katrich, Sergey L. Berdnik, and Victor I. Kijko

Abstract—In general, the problem of the excitation (radiation, scattering) of electromagnetic fields
by a system of finite-dimensional material objects in arbitrary electrodynamic volumes is formulated.
On the basis of the impedance concept, the problem is reduced to solving two-dimensional integral
equations for electric surface currents on material objects. A physically correct transition from the
obtained integral equations to a system of one-dimensional equations for currents on electrically thin
impedance vibrators (monopoles) with electrophysical and geometric parameters that can be irregular
along their length is made. As an example, a system of two monopoles with a variable surface impedance
located in a rectangular waveguide is considered. The problem was solved by the generalized method of
induced electromotive forces (EMF). A distinctive feature of this method is that the current distribution
functions found by the asymptotic averaging method are used to solve integral equations for currents.
The numerical and experimental results concerning electrodynamic characteristics of the structure under
consideration are presented.

1. INTRODUCTION

At present, thin resonant vibrators and their systems allocated in rectangular waveguides are widely
used as structural elements of resonant antenna-waveguide devices operating in microwave and extremely
high frequency (EHF) ranges. Such devices may serve as structural components of coaxial-waveguide
junctions, waveguide filters, matching and tuning elements, exciters for slot radiators, measuring probes,
etc. [1–10].

The vibrators with distributed surface impedance can significantly improve electrodynamic
characteristics of devices operating in infinite medium [11–18], in rectangular waveguides [18–21], and
on spherical surface [22, 23]. A special place is occupied by vibrators with variable surface impedance
located in free space [18, 24–27] or in electrodynamic volumes [18, 23, 28]. The vibrator with variable
surface impedance can be used to control electrodynamic characteristics of radiators with fixed geometric
dimensions [18, 23–28]. The results obtained in [24–28] are devoted to single vibrators excited in their
center by a concentrated EMF in free space. The belt vibrators with real impedance specified by a
step function of their length in rectangular waveguides are considered in [29]. The scattering problems
of plane wave and TE10-wave by single vibrator with variable impedance in free space and rectangular
waveguides was considered in [18].

Recently, specialists have used commercial programs (Ansoft HFSS, FEKO, etc.) to calculate the
electrodynamic characteristics of various waveguide structures [30]. However, these programs are not
suitable in many cases, for example, for elements with variable distributed surface impedance along the
vibrator length.

The present paper is aimed to solve a problem of the excitation of electromagnetic fields by a system
of finite-dimensional material objects in arbitrary electrodynamic volumes and study electrodynamic
characteristics of vibrator system with constant and variable distributed surface impedance in a
rectangular waveguide.
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2. PROBLEM FORMULATION AND INITIAL INTEGRAL EQUATIONS

Let us formulate the problem of excitation (radiation, scattering) of electromagnetic fields in arbitrary
electrodynamic volumes with material objects of finite dimensions. Consider a volume V , confined by a
perfectly conducting surface S (or impedance or partially impedance surface SZ) a part of which can be
moved to infinity. The part of the surface S can be moved to infinity. The permittivity and permeability
of medium in the volume V are εv1, μ

v
1. The volume V contains material objects enclosed in local

volumes Vm (m = 1, 2, . . . ,M) bounded by closed smooth surfaces Sm. The objects are characterized
by homogeneous material parameters: permittivity εm, permeability μm, and conductivity σm (Fig. 1).

Figure 1. The problem geometry and corresponding notations.

The fields of external sources can be specified as the fields of electromagnetic waves incident on
objects (scattering problem), as the fields of EMF applied to the objects, differing from zero only in
some regions of volumes Vm (radiation problem), or as a combination of these fields. Let us assume
that if monochromatic fields depend on time t as eiωt (ω = 2πf is the angular frequency and f is
the frequency in Hz), the electromagnetic fields of specified extraneous sources in the volume V are
{�E0(�r), �H0(�r)}, where �r is the radius vector of the observation point. The problem consists in finding
the total electromagnetic fields {�E(�r), �H(�r)} in the volume V satisfying the Maxwell’s equations and
boundary conditions on the surfaces Sm and S.

The total electromagnetic field in the volume V can be easily expressed through tangential
components of fields on the surface Sm. In the CGS-Gaussian system, the field can be represented
as Kirchhoff-Kotler integral equations [18, 31]:

�E(�r) = �E0(�r) +
1

4πikεv1
(graddiv + k2

1)
M∑

m=1

∫
Sm

Ĝe(�r,�r′m)[�nm, �H(�r′m)]d�r′m

− 1
4π

rot
M∑

m=1

∫
Sm

Ĝm(�r,�r′m)[�nm, �E(�r′m)]d�r′m,

�H(�r) = �H0(�r) +
1

4πikμv
1

(graddiv + k2
1)

M∑
m=1

∫
Sm

Ĝm(�r,�r′m)[�nm, �E(�r′m)]d�r′m

+
1
4π

rot
M∑

m=1

∫
Sm

Ĝe(�r,�r′m)[�nm, �H(�r′m)]d�r′m, (1)

where k = 2π/λ is the wave number; λ is the wavelength in free space; k1 = k
√
εv1μ

v
1 is the wave
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number in the volume medium; �r′m are the radius vectors of source points located on surfaces Sm;
�nm are unit vectors of external normals for these surfaces; and Ĝe(�r,�r′m), Ĝm(�r,�r′m) are electric and
magnetic tensor Green’s functions for vector Hertz potentials, satisfying the vector Helmholtz equation
and corresponding boundary conditions on the surface S. The boundary conditions at infinite parts of
surfaces transform into the Sommerfeld radiation condition.

The representation (1) can be applied to the solution of electrodynamic problem when some
additional physical considerations are involved for determining the fields on object surfaces. For
example, if currents induced on the well-conducting object (σm → ∞) are concentrated on their surfaces,
the Shchukin-Leontovich approximate impedance boundary conditions [18] can be used

[�n, �E(�r)] = Z̄S(�r)[�n, [�n, �H(�r)]], (2)

where Z̄S(�r) = R̄S(�r) + iX̄S(�r) = ZS(�r)/Z0 is the distributed surface impedance normalized to the
characteristic impedance of free space Z0 = 120πOhm. In general case, the impedance Z̄S(�r) may vary
on the object surface. The boundary condition (2) is approximate in the sense that the solution of
the electrodynamic problem with their use is the first term of the asymptotic expansion of the exact
solution in powers of the small parameter |Z̄S(�r)| � 1 [18]. In other words, the terms proportional to
|Z̄S(�r)|2, |Z̄S(�r)|3, . . . are discarded from the solution.

The impedance boundary condition (2) allows us to change variable in the equation system (1)
from the fields to surface currents. Without loss of generality, let us change variable for the case
when two material objects located in the volume V . When the observation point is located on the
surfaces S1 or S2, the following integral equation system relative to the density of the surface current
�J1,2(�r1,2) = (c/4π)[�n1,2, �H(�r1,2)] (c ≈ 2.998 · 1010 cm/s is the speed of light in vacuum) on the surfaces
S1 and S2 can be written as:

ZS1(�r1) �J1(�r1) = �E0(�r) +
1

iωεv1
(graddiv + k2

1)

⎧⎨
⎩

∫
S1

Ĝe(�r,�r′1) �J1(�r′1)d�r
′
1 +

∫
S2

Ĝe(�r,�r′2) �J2(�r′2)d�r
′
2

⎫⎬
⎭

+
1
4π

rot

⎧⎨
⎩

∫
S1

Ĝm(�r,�r′1)ZS1(�r′1)[�n1, �J1(�r′1)]d�r
′
1+

∫
S2

Ĝm(�r,�r′2)ZS2(�r′2)[�n2, �J2(�r′2)]d�r
′
2

⎫⎬
⎭, (3a)

ZS2(�r2) �J2(�r2) = �E0(�r) +
1

iωεv1
(graddiv + k2

1)

⎧⎨
⎩

∫
S2

Ĝe(�r,�r′2) �J2(�r′2)d�r
′
2 +

∫
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Ĝe(�r,�r′1) �J1(�r′1)d�r
′
1

⎫⎬
⎭

+
1
4π

rot

⎧⎨
⎩

∫
S2

Ĝm(�r,�r′2)ZS2(�r′2)[�n2, �J2(�r′2)]d�r
′
2+

∫
S1

Ĝm(�r,�r′1)ZS1(�r′1)[�n1, �J1(�r′1)]d�r
′
1

⎫⎬
⎭, (3b)

�H0(�r) =− k

ω
rot
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2

⎫⎬
⎭

+
1
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1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
S1

Ĝm(�r,�r′1)ZS1(�r′1)[�n1, �J1(�r′1)]d�r
′
1

+
∫
S2

Ĝm(�r,�r′2)ZS2(�r′2)[�n2, �J2(�r′2)]d�r
′
2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (3c)

3. INTEGRAL EQUATIONS FOR CURRENTS IN ELECTRICALLY THIN
VIBRATORS

Direct solution of the equations system (3) for objects with complex surface shapes may encounter
serious mathematical difficulties. However, the problem for impedance cylinders, whose cross-section
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perimeter is small as compared to their length and the wavelength in the medium, the solution of the
equation system can be greatly simplified. It is also possible to extend the boundary condition (2)
for the cylindrical vibrator surfaces with an arbitrary distribution of the complex impedance for any
structure of the exciting field and electrophysical characteristics of the vibrator material [18]. Formulas
defining specific realizations of the surface vibrator impedance can be found in [18, 28].

Let us transform the equations system (3) for vibrators made of circular cylindrical wires with radii
r1,2 and lengths 2L1,2 satisfying the thin wire approximation

r1,2

2L1,2
� 1,

r1,2

λ1
� 1. (4)

These inequalities make it possible to assume that the electric currents induced in the vibrators can be
represented as

�J1(2)(�r1(2)) = �es1(2)
J1(2)(s1(2))ψ1(2)(ρ1(2), ϕ1(2)), (5)

where �es1(2)
are unit vectors directed along the vibrator axes; s1(2) are local coordinates associated

with the vibrators axes; ψ1(2)(ρ1(2), ϕ1(2)) are functions of transverse polar coordinates ρ1(2), ϕ1(2). The
functions ψ1(2)(ρ1(2), ϕ1(2)) satisfy normalization conditions

∫
⊥1(2)

ψ1(2)(ρ1(2), ϕ1(2))ρ1(2)dρ1(2)dϕ1(2) = 1

and boundary conditions for the vibrator currents

J1(2)(±L1(2)) = 0 . (6)

Let us project Equations (3a) and (3b) on the vibrator axes taking into account the relations in
Eqs. (5)–(6) and the inequality [�n1(2), �J1(2)(�r1(2))] � 1, which follows from relations (4). Then, the
integral equation system for the vibrator currents with account of interaction between the vibrators can
be written as:

(
d2

ds21
+ k2

1

)
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

L1∫
−L1

J1(s′1)Gs1(s1, s
′
1)ds

′
1

+

L2∫
−L2

J2(s′2)Gs2(s1, s
′
2)ds

′
2

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= −iωεv1 [E0s1(s1) − zi1(s1)J1(s1)] , (7a)

(
d2

ds22
+ k2

1

)
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

L2∫
−L2

J2(s′2)Gs2(s2, s
′
2)ds

′
2

+

L1∫
−L1

J1(s′1)Gs1(s2, s
′
1)ds

′
1

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= −iωεv1 [E0s2(s2) − zi2(s2)J2(s2)] , (7b)

where zi1(2)(s1(2)) are internal linear impedances ([Ohm/m]) of vibrators ZS1(2)(�r1(2)) =
2πr1(2)zi1(2)(�r1(2)), E0s1(2)

(s1(2)) are projections of extraneous sources fields on the vibrator axes;
s1 = −L1 and s2 = −L2 are coordinates of mirror images of the vibrator ends in the lower wide
wall of the waveguide; and Gs1,2(s1,2, s

′
1,2) are the tensors Green’s functions components of the volume

V . Since the form of the Green functions was not specified in Equation (7), they are valid for any
electrodynamic volume V if the Green’s functions are known or can be constructed for this volume.

4. TWO IMPEDANCE VIBRATORS IN RECTANGULAR WAVEGUIDE

Consider a hollow (εv1 = μv
1 = 1) infinite rectangular waveguide with perfectly conducting walls where

two thin asymmetric vibrators (monopoles) with variable surface impedance are located (Fig. 2). The
waveguide cross-section is {a× b}, and the vibrator radii and lengths are r1,2 and L1,2. The TE10-wave
propagates in the waveguide from the direction z = −∞.
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Figure 2. The two vibrators system in the rectangular waveguide.

The solution of equations system in Eq. (7) will be sought by the generalized method of induced
EMF [18], using functions J1(2)(s1(2)) = J0

1(2)f1(2)(s1(2)) as approximating expressions for vibrator
currents. In these expressions, J0

1(2) are unknown current amplitudes, and f1(2)(s1(2)) are predefined
current distribution functions, which can be obtained by solving the equation for the current on stand-
alone vibrators by averaging method [4, 18, 20, 21]. When the structure is excited by the TE10-wave,
the distribution function can be presented as:

f1(s1) = cos k̃1s1 − cos k̃1L1, (8a)

f2(s2) = cos k̃2s2 − cos k̃2L2, (8b)

where k̃1(2) = k − i2πzav
i1(2)

Z0Ω1(2)
, zav

i1(2) = 1
2L1(2)

L1(2)∫
−L1(2)

zi1(2)(s1(2))ds1(2) are internal impedances averaged over

the vibrator lengths and Ω1(2) = 2 ln(2L1(2)/r1(2)).
First, let us multiply Equations (7a) and (7b) by functions f1(s1) and f2(s2), respectively, and then

integrate the results over the vibrator lengths. Thus, a system of linear algebraic equations (SLAE) are
derived whose solution defines the current amplitudes J0

1,2:

J0
1

(
Z11 + F Z̄

1

)
+ J0

2Z12 = − iω
2k
E1,

J0
2

(
Z22 + F Z̄

2

)
+ J0

1Z21 = − iω
2k
E2,

(9)

where

Z11(22) =
4π
ab

∞∑
m=1

∞∑
n=0

εn
(
k2 − k2

y

)
k̃2

1(2)

kkz

(
k̃2

1(2) − k2
y

)2 e
−kzr1(2) sin2 kxx01(02)

×
[
sin k̃1(2)L1(2) cos kyL1(2) −

(
k̃1(2)/ky

)
cos k̃1(2)L1(2) sin kyL1(2)

]2
,

Z12(21) =
4π
ab

∞∑
m=1

∞∑
n=0

εn
(
k2 − k2

y

)
k̃1k̃2e

−kzr2(1)

kkz

(
k̃2

1 − k2
y

)(
k̃2

2 − k2
y

) sin kxx01 sin kxx02

×
[
sin k̃1L1 cos kyL1 −

(
k̃1/ky

)
cos k̃1L1 sin kyL1

]
×

[
sin k̃2L2 cos kyL2 −

(
k̃2/ky

)
cos k̃2L2 sin kyL2

]
, (10)

E1(2) = 2H0
k

kgk̃1(2)

sin
π

a
x01(02)f

(
k̃1(2)L1(2)

)
,

f
(
k̃1(2)L1(2)

)
= sin k̃1(2)L1(2) − k̃1(2)L1(2) cos k̃1(2)L1(2),
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F Z̄
1(2) = − i

r1(2)

L1(2)∫
0

f2
1(2)(s1(2))Z̄S1(2)(s1(2))ds1(2). (11)

The following notation in Equations (10) and (11) are accepted: εn =
{

1, n = 0
2, n �= 0 , kx = mπ

a ky = nπ
b ,

m and n are integers; kz =
√
k2

x + k2
y − k2, kg = 2π/λg =

√
k2 − (π/a)2; λg is the wavelength in the

waveguide; Z̄S1(2)(s1(2)) = R̄S1(2) + iX̄S1(2)φ(s1(2)) are the complex distributed surface impedances;
φ(s1(2)) are the predefined functions; and H0 is the amplitude of the incident TE10-wave.

The analytical solution of the equation system in Eq. (9) has the following form:

J0
1 = − iω

2k
E1(Z22 + F z

2 ) − E2Z12

(Z11 + F z
1 )(Z22 + F z

2 ) − Z21Z12
= − iω

2k
J̃0

1 ,

J0
2 = − iω

2k
E2(Z11 + F z

1 ) − E1Z21

(Z11 + F z
1 )(Z22 + F z

2 ) − Z21Z12
= − iω

2k
J̃0

2 .

(12)

The final expressions for the vibrator currents can be written using Equations (8) and (12) as

J1(2)(s1(2)) = − iω
2k
J̃0

1(2)

(
cos k̃1(2)s1(2) − cos k̃1(2)L1(2)

)
. (13)

The energy characteristics of the structure: the reflection S11 and S12 transmission coefficients can be
determined as:

S11 = − 4πi
abkkg

{
k2

k̃1

J̃0
1 sin

(πx01

a

)
f

(
k̃1L1

)
e−ikgz0 +

k2

k̃2

J̃0
2 sin

(πx02

a

)
f(k̃2L2)

}
e2ikgz, (14)

S12 = 1 +
4πi
abkkg

{
k2

k̃1

J̃0
1 sin

(πx01

a

)
f

(
k̃1L1

)
eikgz0 +

k2

k̃2

J̃0
2 sin

(πx02

a

)
f(k̃2L2)

}
. (15)

The voltage standing wave ratio is defined by the formula VSWR = (1 + |S11|)/(1 − |S11|).

5. NUMERICAL AND EXPERIMENTAL RESULTS

Consider several impedance distributions defined by linear functions of coordinates s1(2): constant
φ0(s1(2)) = 1, decreasing φ1(s1(2)) = 2[1 − (s1(2)/L1(2))] and increasing φ2(s1(2)) = 2(s1(2)/L1(2))
functions with equal averages along the vibrator length, φ0,1,2(s1(2)) = 1. Substituting the distribution
functions, φ0(s1(2)), φ1(s1(2)), and φ2(s1(2)) into the expression (11), the functions F Z̄0

1(2), F
Z̄1
1(2), and F Z̄2

1(2)

can be obtained in the form:

F Z̄0
1(2) = −2i

(
R̄S1(2) + iX̄S1(2)

)
k̃2

1(2)L1(2)r1(2)

⎡
⎢⎣

(
k̃1(2)L1(2)

2

)2 (
2 + cos 2k̃1(2)L1(2)

)
−(3/8)k̃1(2)L1(2) sin 2k̃1(2)L1(2)

⎤
⎥⎦

= F̃ Z̄
1(2)

(
R̄S1(2) + iX̄S1(2)

)
Φ1(2), (16)

F Z̄1
1(2) = F̃ Z̄

1(2)

⎧⎪⎪⎨
⎪⎪⎩R̄S1(2)Φ1(2) + iX̄S1(2)

⎡
⎢⎢⎣

(
k̃1(2)L1(2)

2

)2 (
2 + cos 2k̃1(2)L1(2)

)
−(7/4) sin2 k̃1(2)L1(2) − 2

(
cos k̃1(2)L1(2) − 1

)
⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭ , (17)

and

F Z̄2
1(2) = F̃

Z̄
1(2)

⎧⎪⎪⎨
⎪⎪⎩R̄S1(2)Φ1(2)+iX̄S1(2)

⎡
⎢⎢⎣

(
k̃1(2)L1(2)

2

)2(
2+cos 2k̃1(2)L1(2)

)
+(7/4) sin2 k̃1(2)L1(2)

−(3/4)k̃1(2)L1(2) sin 2k̃1(2)L1(2) + 2
(
cos k̃1(2)L1(2) − 1

)
⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ . (18)
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As from Eqs. (16)–(18), the functions F Z̄0,1,2
1(2) obtained for different impedance distributions differ from

each other, despite the equal averages of functions φ0,1,2(s1(2)). Therefore, it can be concluded that
although the functions f1(2)(s1(2)) = cos k̃1(2)s1(2)−cos k̃1(2)L1(2) in the formulas for the current coincide
for all three impedance distributions, the current amplitudes and hence, the energy characteristics of
the vibrator-waveguide system are significantly different for all three impedance distribution functions.

The simulation results presented in Figs. 3–8 were obtained for the radiator system with following
parameters: a = 58.0 mm, b = 25.0 mm, L1,2 = 15.0 mm, r1,2/2L1,2 = 0.07, and r1,2/λ is in the range
from 0.02 to 0.03. Such a vibrator length was selected to reduce the probability of electrical breakdown
in the waveguide operating at high radiated power. The resonant vibrator wavelengths for various values
of the impedance X̄S are represented in Table 1.

Table 1. The resonant vibrator wavelengths.

X̄S
λres,
mm

|X̄S |2
∣∣
λ=λres

λres
G = 2π√

k2
res−(π/a)2

, mm

(kres = 2π/λres)

λres
G
4 ,

mm

λres
G
2 ,

mm

3λres
G
4 ,

mm
−0.03

kr 66 0.025 80 20 40 60
0 72 0 92 23 46 69

kr ln(4.0)φ2(s) 80 0.047 108 27 54 81
kr ln(4.0)

kr ln(2.7)φ1(s)
84

0.043
0.022
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Figure 3. The reflection coefficient |S11| as a
function of wavelength for the waveguide structure
with single monopoles: 1 — X̄S = −0.03/(kr), 2
— Z̄S = 0, 3 — Z̄S = 0.01, 4 — Z̄S = 0.03, 5 —
X̄S = kr ln(4.0)φ2(s), 6 — X̄S = kr ln(4.0), 7 —
X̄S = kr ln(2.7)φ1(s), 8 — X̄S = kr ln(4.0)φ1(s),
9 — X̄S = kr ln(8.0)φ1(s).
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Figure 4. The reflection coefficient |S11| as a
function of wavelength for the waveguide structure
with two monopoles: 1 — X̄S1,2 = 0, 2 — X̄S1,2 =
kr1,2 ln(4.0)φ2(s1,2), 3 — X̄S1,2 = kr1,2 ln(4.0),
4 — X̄S1,2 = kr1,2 ln(4.0)φ1(s1,2), 5 — X̄S1,2 =
kr1,2 ln(8.0)φ1(s1,2).

The curves of the reflection coefficient modulus |S11| = f(λ) in the waveguide for single monopoles
are plotted in Fig. 3 for the various value, type, and distribution functions of the surface impedance.
The impedance of various types can be realized as follows: an active impedance R̄S > 0 by a dielectric
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cylinder with a metal coating thinner than skin layer; an inductive impedance X̄S > 0 by a metal cylinder
with magnetodielectric coating or corrugated metal cylinder; and a capacitive impedance X̄S < 0 by
a layered metal-dielectric cylinder. As can be seen from Fig. 3, the vibrators can be resonantly tuned
(|S11|max, argS11 = 0) at any frequency from the single mode range of waveguide operation. As
expected, the resonant wavelength λres for vibrator with equal length can be decreased or increased if
the capacitive or inductive impedance is applied. At the same time, the active impedance R̄S decreases
the reflection coefficient |S11|max, but it practically does not affect the vibrator resonant wavelength λres

(curves 3.4). All simulation results were obtained with R̄S = 0.0001. The relative stopband Δλ/λres at
the half power level (0.707|S11|max) is in the range from 4% to 8%.

When the second monopole is placed in the plane of the waveguide cross-section symmetrically
relative to its longitudinal axis at a distance λres

G /4 from the first vibrator, the ratio Δλ/λres significantly
increases up to 15% or 50% in the long-wave or short-wave parts of the waveguide operating range. At
the same time, the common resonant wavelength of the vibrator system simultaneously reduces (Fig. 4).

When the monopoles are allocated from one another in the plane {x0y} at distances other than
λres

G /4, the second reflection and transmission resonances are observed (Fig. 5). In this case, the width
of the reflection resonance curves for the symmetric vibrator allocation (x01 = a − x02) shown in
Fig. 5(a) is greater than that for asymmetric allocation (x01 �= a− x02) shown in Fig. 5(b). The same
curve shapes are also observed for the transmission resonance if impedance distributions are increasing
functions, while for the constant and increasing impedance distributions, the curves become wider for
the asymmetric arrangement of vibrators.
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Figure 5. The reflection coefficient |S11| as a function of wavelength for the waveguide structure with
two monopoles: 1 — X̄S1 = 0, X̄S2 = 0; 2 — X̄S1 = kr1 ln(4.0)φ2(s1), X̄S2 = 0; 3 — X̄S1 = kr1 ln(4.0),
X̄S2 = 0; 4 — X̄S1 = kr1 ln(4.0)φ1(s1), X̄S2 = 0.

Various combinations of impedance magnitude, type, and distributions cause significant changes
reflection and transmission resonance positions in the operating wavelength range (Fig. 6). With equal
impedances the monopoles resonate at the same wavelength, therefore only one reflection resonance is
observed (curve 3).

If the resonant vibrator wavelengths are positioned at different ends of the waveguide operating
range, the reflection resonances are also observed at these wavelengths. The resonant curves of the
transmission coefficient in the long-wave part of the operating wavelength for the asymmetric monopole
arrangement are much narrower as compared with that for the symmetric monopole arrangement
(Fig. 7). Such shape of curves can be explained by the different wavelength dependence for the vibrators
with inductive and capacitive impedances.

When one of the vibrators is displaced relative to another along the waveguide longitudinal axis
at nλres

G /4 (n = 1, 3, 5, . . .), the steepness of resonance curves significantly increases as compared to
that for the single monopole and system of two monopoles located in the plane {x0y}. The steepness
increases in greater degree for larger n (Fig. 8). In this case, two transmission resonances are observed
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Figure 6. The reflection coefficient |S11| as
a function of wavelength for the waveguide
structure with two monopoles: 1 — X̄S1 =
kr1 ln(4.0)φ1(s1), X̄S2 = 0; 2 — X̄S1 =
kr1 ln(4.0)φ2(s1), X̄S2 = 0; 3 — X̄S1 =
kr1 ln(4.0), X̄S2 = kr2 ln(2.7)φ1(s2).
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Figure 7. The transmission coefficient |S12|
for the system with two monopoles as the
function of wavelength (x02 = 7a/8): X̄S1 =
kr1 ln(8.0)φ1(s1), X̄S2 = −0.03/(kr2).
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Figure 8. The reflection coefficient |S11| as a function of wavelength for the waveguide structure
with two monopoles: 1 — X̄S1,2 = kr1,2 ln(4.0)φ2(s1,2), 2 — X̄S1,2 = kr1,2 ln(4.0), 3 — X̄S1,2 =
kr1,2 ln(4.0)φ1(s1,2).

(a) (b) (c)

Figure 9. Experimental monopole samples: (a) solid brass cylinder with r = 2.0 mm; (b) corrugated
brass cylinder with outer and inner radii r = 2.0 mm, ri = 0.5 mm and cell length equal to
2.0 MM; (c) a corrugated brass cylinder with outer radius equal to 2.0 mm and variable inner radius
ri(s) = r exp[− ln(r/ri)φ1(s)].
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Figure 10. Theoretical and experimental reflection coefficients |S11| as functions of wavelength for the
system with two monopoles: (a) X̄S1 = kr1 ln(4.0), X̄S2 = 0; (b) X̄S1 = kr1 ln(4.0)φ1(s1), X̄S2 = 0.

on both sides of the reflection resonances.
Experimental measurements of reflection coefficient |S11| were carried out by using monopole

samples shown in Fig. 9. As can be seen from Fig. 10, the calculated and experimental results are
in satisfactory agreement.

6. CONCLUSION

It has been shown that distributed surface impedance of single vibrator with fixed geometric dimensions
allocated in the rectangular waveguide can be tuned into resonance at any wavelength from the operating
waveguide range. Various combinations of impedance magnitude, type, and distribution functions cause
significant changes in positions of reflection and transmission resonances in the operating wavelength
range. The surface impedance of the inductive type, especially with the increasing distribution function
makes it possible to use vibrators and multi-element vibrator systems as resonant elements in low-
profile waveguides. Comparison of the calculated results with experimental data for the two impedance
monopoles system in the rectangular waveguide confirms the adequacy of the proposed mathematical
model to real physical processes. The obtained results can be used to developing and designing various
antenna-waveguide devices with resonant vibrators.
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