Vol. 124

Latest Volume
All Volumes
All Issues
2022-09-21

Isolation Analysis of Miniaturized Metamaterial-Based MIMO Antenna for X-Band Radar Applications Using Machine Learning Model

By Jyothsna Undrakonda and Ratna Kumari Upadhyayula
Progress In Electromagnetics Research C, Vol. 124, 135-153, 2022
doi:10.2528/PIERC22080203

Abstract

A novel metamaterial-based circular patch multi-input multi-output (MIMO) antenna is designed with a `C'-shaped defected ground structure for high isolation. A 4 × 4 mm2 unit cell for a ring resonator has been designed and exhibited double negative material (DNG) properties from 1.0 to 2.92 GHz and 13.68 to 17.67 GHz and Mu negative material (MNG) from 4.70 to 13.67 GHz. The proposed antenna structure is designed by embedding the ring resonator-based meta-structure to a circular patch antenna and fabricated with dimensions 0.245λ0×0.409λ0 (15×25 mm2). The proposed antenna operating at 8.50 to 14.23 GHz for X and lower Ku bands is used in the Unmanned Arial Vehicle (UAV's) applications. The spacing between elements is 0.088λ0 (5.4 mm) on an FR4 epoxy substrate, and the `C'-shaped structure on the back of the antenna improves the isolation of more than 24 dB in the operating band. Distance between the antenna elements plays a crucial role, and parameters affected by this are optimized by introducing machine learning. For future predictions, a linear regression model was created to optimize the parameters' linear dependencies like isolation and return loss on the distance between the antenna elements. The radiation efficiency and gain of the antenna are enhanced by 92% and 6.02 dB at 13.22 GHz, respectively. The MIMO antenna's simulated results of diversity and other parameters are in the acceptable range with the measured results used for X-band radar applications. The proposed decoupling technique is simple to understand and implement.

Citation


Jyothsna Undrakonda and Ratna Kumari Upadhyayula, "Isolation Analysis of Miniaturized Metamaterial-Based MIMO Antenna for X-Band Radar Applications Using Machine Learning Model," Progress In Electromagnetics Research C, Vol. 124, 135-153, 2022.
doi:10.2528/PIERC22080203
http://jpier.org/PIERC/pier.php?paper=22080203

References


    1. Liu, Y., G. Xu, and X. Xu, "MIMO radar calibration and imagery for near-field scattering diagnosis," IEEE Trans. Aerosp. Electron. Syst., Vol. 54, No. 1, 442-452, 2018.

    2. Yegulalp, A. F., K. W. Forsythe, A. O. Hero, and D. W. Bliss, "Environmental issues for MIMO capacity," IEEE Trans. Signal Process., Vol. 50, No. 9, 2128-2142, 2002.

    3. Li, J. and P. Stoica, "MIMO radar with colocated antennas," IEEE Signal Process. Mag., Vol. 24, No. 5, 106-114, Oct. 2007.

    4. Yang, X., T. Zeng, C. Mao, C. Hu, and W. Tian, "Multi-static MIMO SAR three-dimensional deformation measurement system," Proc. IEEE 5th Asia-Pacific Conf. Synth. Aperture Radar (APSAR), Vol. 1, 297-301, Singapore, 2015.

    5. Haimovich, A. M., R. S. Blum, and L. J. Cimini, "MIMO radar with widely separated antennas," IEEE Signal Process. Mag., Vol. 25, No. 1, 116-129, 2008.

    6. Fishler, E., A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and R. Valenzuela, "MIMO radar: An idea whose time has come," Proc. the IEEE Radar, 71-78, 2004.

    7. Jayanthi, K. and A. M. Kalpana, "Mutual coupling reduction techniques between MIMO antennas for UWB applications," International Journal on Recent and Innovation Trends in Computing and Communication, Vol. 5, No. 9, 18-22, 2017.

    8. Shabbir, T., et al., "16-port non-planar MIMO antenna system with nzi metamaterial decoupling structure for 5G applications," IEEE Access, Vol. 8, 157946-157958, 2020.

    9. Alibakhshikenari, M., et al., "Surface wave reduction in antenna arrays using metasurface inclusion for MIMO and SAR systems," Radio Science, Vol. 54, No. 11, 1067-1075, Nov. 2019, https://doi.org/10.1029/2019RS006871.

    10. Mchbal, A., N. Amar Touhami, H. Elftouh, and A. Dkiouak, "Mutual coupling reduction using a protruded ground branch structure in a compact UWB Owl-shaped MIMO antenna," International Journal of Ants. and Prop., Vol. 10, Article ID 4598527, 2018.

    11. Wang, F., Z. Y. Duan, X. Wang, Q. Zhou, and Y. Gong, "High isolation millimetre-wave wideband MIMO antenna for 5G communication," International Journal of Ants. and Prop., 1-12, 2019.

    12. Kong, L. and X. Xu, "A compact dual-band dual-polarized microstrip antenna array for MIMO-SAR applications," IEEE Trans. on Antennas and Prop., Vol. 66, No. 5, 2374-2381, 2018.

    13. Feng, B., J. Lai, K. Chung, and Q. Zeng, "Dual-wideband and high-gain ME dipole antenna and its 3-D MIMO system with metasurface," IEEE Access, Vol. 6, 33387-33398, 2018.

    14. Chen, Z., W. Zhou, and J. Hong, "Miniaturized MIMO antenna with triple band-notched characteristics for UWB applications," IEEE Access, Vol. 9, 63646-63655, 2021.

    15. Al-bawri, S. S., M. T. Islam, G. Muhammad, M. D. Shabiul Islam, and H. Y. Wong, "Hexagonal shaped NZI MTM based MIMO antenna for mm-Wave application," IEEE Access, Vol. 8, 181003-181013, 2020.

    16. Amin, F., R. Saleem, S. Ur Rehman, M. Bilal, M. F. Shafique, and T. Shabbir, "A compact quad-element UWB-MIMO antenna system with parasitic decoupling mechanism," Appl. Sci., Vol. 9, 1-13, 2019.

    17. Yin, C., Z. Li, and X. Zhu, "Compact UWB MIMO vivaldi antenna with dual band-notched characteristics," IEEE Access, Vol. 7, 38696-38701, 2019.

    18. Xi, Z., Z. Tang, X. Wu, J. Znan, S. Hu, and Y. L. Xin, "Compact UWB-MIMO antenna with high isolation and triple band-notched characteristics," IEEE Access, Vol. 7, 19856-19865, 2019.

    19. Kumar, P., S. Urooj, and A. Malibari, "Design and implementation of quad-element SWB MIMO antenna for IoT applications," IEEE Access, Vol. 8, 697-704, 2020.

    20. Shabbir, T., R. Saleem, S. S. Al-Bawri, M. F. Shafique, and M. T. Islam, "Eight-port metamaterial loaded UWB-MIMO antenna system for 3D system-in-package applications," IEEE Access, Vol. 8, 106982-106992, 2020.

    21. Iqbal, A., et al., "Electromagnetic bandgap backed mm-Wave MIMO antenna for wearable applications," IEEE Access, Vol. 7, 111135-111144, 2019.

    22. Molins-Benlliure, J., E. Antonino-Daviu, M. Cabedo-Fabrés, and M. Ferrando-Baller, "Four-port wide-band cavity-backed antenna with isolating X-shaped block," IEEE Access, Vol. 9, 80535-80545, 2021.

    23. Jaglan, N., D. Kumar, S. D. Gupta, T. Ekta, B. K. Kanaujia, and S. Shweta, "Triple band notched mushroom and uniplanar EBG structures based UWB MIMO/diversity antenna with enhanced wideband isolation," International Journal of Elens. and Coms., Vol. 90, 36-44, 2018.

    24. Khan, A., S. Bashir, G. Salman, and K. Qureshi, "Mutual coupling reduction using ground stub and EBG in compact wideband MIMO-antenna," IEEE Access, Vol. 9, 40972-40979, 2021.

    25. Alibakhshikenari, M., M. Khalily, B. S. Virdee, C. H. See, R. A. Abd-Alhameed, and E. Limiti, "Mutual coupling suppression between two closely placed microstrip patches," IEEE Access, Vol. 7, 23606-23614, 2019.

    26. Elsharkawy, R. R., A. S. A. El-Hameed, and S. M. El-Nady, "Quad-port MIMO filtenna with high isolation employing BPF with high out-of-band rejection," IEEE Access, Vol. 10, 3814-3824, 2022.

    27. Al-Bawri, S. S., et al., "Metamaterial cell-based superstrate towards bandwidth and gain enhancement of quad-band CPW-Fed antenna for wireless applications," Sensors, Vol. 20, 1-14, 2020.

    28. Al-Bawri, S. S., et al., "Compact ultra-wideband monopole antenna loaded with metamaterial," Sensors, Vol. 20, 1-15, 2020.

    29. Arpan, D., P. Merch, K. Jayshri, G. Byun, and T. K. Nguyen, "Wideband flexible/transparent connected-ground MIMO antennas," IEEE Access, Vol. 9, 147003-147015, 2021.

    30. Alibakhshikenari, M., et al., "A comprehensive survey on ``Various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna systems"," IEEE Access, Vol. 8, 192965-193004, 2020.

    31. Ayman, A. A., "Low-interacted multiple antenna systems based on metasurface-inspired isolation approach for MIMO applications," Arab. J. Sci. Eng., Vol. 47, 2629-2638, 2022.

    32. Alibakhshikenar, M., et al., "Isolation enhancement of densely packed array antennas with periodic MTM-photonic bandgap for SAR and MIMO systems," IET Microwaves, Antennas & Propagation, Vol. 14, No. 3, 183-188, 2020.

    33. Alibakhshikenar, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, and F. Falcone, "Array antenna for synthetic aperture radar operating in X and Ku-bands: A study to enhance isolation between radiation elements," EUSAR 2018; 12th European Conference on Synthetic Aperture Radar, 1083-1087, 2018.

    34. Alibakhshikenar, M., et al., "Antenna mutual coupling suppression over wideband using embedded periphery slot for antenna arrays," Electronics, Vol. 7, No. 9, 198, 2018.

    35. Alibakhshikenar, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, and F. Falcone, "Interaction between closely packed array antenna elements using metasurface for applications such as MIMO systems and synthetic aperture radars," Radio Science, Vol. 53, 1368-1381, 2018.

    36. Alibakhshikenar, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, and F. Falcone, "A new study to suppress mutual-coupling between waveguide slot array antennas based on metasurface bulkhead for MIMO systems," Proceedings of the 2018 Asia-Pacific Microwave Conf. (APMC), 500-502, 2018.

    37. Alibakhshikenar, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, and F. Falcone, "A new waveguide slot array antenna with high isolation and high antenna bandwidth operation on Ku- and K-bands for radar and MIMO systems," Proceedings of the 48th European Microwave Conf. (EuMC), 1421-1424, 2018.

    38. Alibakhshikenar, M., et al., "Study on antenna mutual coupling suppression using integrated metasurface isolator for SAR and MIMO applications," Proceedings of the 48th European Microwave Conf. (EuMC), 1425-1428, 2018.

    39. Alibakhshikenar, M., et al., "Mutual-coupling isolation using embedded metamaterial em bandgap decoupling slab for densely packed array antennas," IEEE Access, Vol. 7, 5182-51840, 2019.

    40. Alibakhshikenar, M., et al., "Mutual coupling suppression between two closely placed microstrip patches using EM-bandgap metamaterial fractal loading," IEEE Access, Vol. 7, 23606-23614, 2019.

    41. Alibakhshikenar, M., B. S. Virdee, and E. Limiti, "A technique to suppress mutual coupling in densely packed antenna arrays using metamaterial supersubstrate," 12th European Conference on Antennas and Propagation, 9-13, 2018.

    42. Sunita, A. N. and B. Gauraw, "Design of squared shape SRR metamaterial by using rectangular microstrip patch antenna at 2.85 GHz," 4th International Conference on Signal Proc. and Integrated Ntrks (SPIN), 196-200, IEEE, 2017.

    43. Kiruthika, R. and T. Shanmuganantham, "Comparison of different shapes in microstrip patch antenna for X-band applications," International Conference on Emerging Technological Trends (ICETT), 1-6, Oct. 2016.

    44. Khan, S. and T. F. Eibert, "A multifunctional metamaterial-based dual-band isotropic frequency-selective surface," IEEE Trans. on Antennas and Prop., Vol. 66, No. 8, 4042-4051, 2018.

    45. Saharawi, M. S., A. T. Hassan, and M. U. khan, "Correlation coefficient calculations for MIMO antenna systems: A comparative study," International Journal of Microw. and Wireless Tech., 1-14, 2017.