Vol. 124

Latest Volume
All Volumes
All Issues
2022-09-22

Sensitivity Estimation of a Planar Optical Waveguide Using Broadband Difference Interferometeric Principle for Detection of Hemoglobin Concentration in Blood

By Abhishek Upadhyay, Chandan Singh Yadav, Gulab Chand Yadav, Shishu Pal Singh, and Vivek Singh
Progress In Electromagnetics Research C, Vol. 124, 167-177, 2022
doi:10.2528/PIERC22072603

Abstract

Broadband differences interferometeric analysis of a three-layer planar polymer optical waveguide is proposed and optimized to detect the concentration of hemoglobin in blood. The dispersion characteristic and cutoff film thickness of proposed waveguide are obtained by matching the field at various boundaries. The obtained cutoff film thickness for TE0 and TM0 modes is 0.09 µm, 0.1 µm at operating wavelength 400 nm, and 0.19 µm and 0.23 µm at operating wavelength 800 nm, respectively. The effective refractive indices of TE0 and TM0 modes are obtained at two considered wavelength i.e. 400 nm and 800 nm, and hence the difference of their propagation constant is calculated. It is observed that the propagation constant of these modes decreases with the increase of wavelength. Also, the difference of propagation constant attains its maximum value at certain wavelength and decreases either side of this wavelength. The interference maxima signals at output are considered as sensing signal. The maxima of interference signals, close to the maximum value of propagation constant, are shifted sufficiently with the change in cover refractive index. The maximum sensitivity 3.8 nm/RIU is obtained in the proposed broadband differences interferometeric analysis of waveguide at film thickness 300 nm. Hence, at this film thickness the sensing signal changes by 0.68 nm/g/L of hemoglobin concentration in blood.

Citation


Abhishek Upadhyay, Chandan Singh Yadav, Gulab Chand Yadav, Shishu Pal Singh, and Vivek Singh, "Sensitivity Estimation of a Planar Optical Waveguide Using Broadband Difference Interferometeric Principle for Detection of Hemoglobin Concentration in Blood," Progress In Electromagnetics Research C, Vol. 124, 167-177, 2022.
doi:10.2528/PIERC22072603
http://jpier.org/PIERC/pier.php?paper=22072603

References


    1. Du, H., Z. Li, Y. Wang, Q. Yang, and W. Wu, "Nanomaterial-based optical biosensors for the detection of foodborne bacteria," Food Reviews International, Vol. 38, No. 4, 655-684, 2020, doi: 10.1080/87559129.2020.1740733.
    doi:10.1080/87559129.2020.1740733

    2. Singh, V. and D. Kumar, "Theoretical modeling of a metal-clad planar waveguide based biosensors for the detection of pseudomonas-like bacteria," Progress In Electromagnetics Research M, Vol. 6, 167-184, 2009.

    3. Samson, R., G. R. Navale, and M. S. Dharne, "Biosensors: Frontiers in rapid detection of COVID-19," 3 Biotech, Vol. 10, No. 385, 1-9, 2020, doi: 10.1007/S13205-020-02369-0.

    4. Liu, N., S. Wang, J. Wang, J. Lv, Q. Cheng, W. Ma, and Y. Lu, "Dual-band reflective optical sensor based on GMR-TPS structure to detect the hemoglobin," IEEE Sensors Journal, Vol. 22, No. 13, 13529-13535, 2022, doi: 10.1109/JSEN.2022.3179010.
    doi:10.1109/JSEN.2022.3179010

    5. Beutler, E. and J. Waalen, "The definition of anemia: What is the lower limit of normal of the blood hemoglobin concentration?," Blood, Vol. 107, 1747-1750, 2006, doi: 10.1182/BLOOD-2005-07-3046.
    doi:10.1182/blood-2005-07-3046

    6. Friebel, M. and M. Meinke, "Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250-1100 nm dependent on concentration," Applied Optics, Vol. 45, No. 12, 2838-2842, 2006, doi: 10.1364/AO.45.002838.
    doi:10.1364/AO.45.002838

    7. Peltomaa, R., B. Glahn-Martínez, E. Benito-Peña, and M. C. Moreno-Bondi, "Optical biosensors for label-free detection of small molecules," Sensors, Vol. 18, No. 4126, 1-46, 2018, doi: 10.3390/S18124126.

    8. Liu, X., Y. Gu, C. Huang, M. Zhao, Y. Cheng, E. G. A. Jawdeh, H. S. Bada, L. Chen, and G. Yu, "Simultaneous measurements of tissue blood flow and oxygenation using a wearable fiber-free optical sensor," J. of Biomedical Optics, Vol. 26, No. 1, 012705, 2021, doi: 10.1117/1.JBO.1.012705.
    doi:10.1117/1.JBO.26.1.012705

    9. Goodrich, T. T., H. J. Lee, and R. M. Corn, "Direct detection of genomic DNA by enzymatically amplified SPR imaging measurements of RNA microarrays," J. Am. Chem. Soc., Vol. 126, 4086-4087, 2004, doi: 10.1021/ja039823p.
    doi:10.1021/ja039823p

    10. Bahadoran, M., A. K. Seyfari, P. Sanati, and L. S. Chua, "Label free identification of the different status of anemia disease using optimized double-slot cascaded microring resonator," Scientific Reports, Vol. 12, No. 5548, 2022, doi: 10.1038/s41598-022-09504-2.

    11. Kitsara, M., K. Misiakos, I. Raptis, and E. Makarona, "Integrated optical frequency-resolved Mach-Zehnder interferometers for label-free affinity sensing," Optics Express, Vol. 18, 8193, 2010, doi: 10.1364/oe.18.008193.
    doi:10.1364/OE.18.008193

    12. Lu, J., C. M. Strohsahl, B. L. Miller, and L. J. Rothberg, "Reflective interferometric detection of label-free oligonucleotides," Analytical Chemistry, Vol. 76, 4416-4420, 2004, doi: 10.1021/ac0499165.
    doi:10.1021/ac0499165

    13. Calo, G., A. Farinola, and V. Petruzzelli, "Design and optimization of high sensitivity photonic interferometric biosensors on polymeric waveguides," Progress In Electromagnetics Research Letters, Vol. 33, 151-166, 2012.
    doi:10.2528/PIERL12051303

    14. Kozma, P., F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, "Integrated planar optical waveguide interferometer biosensors: A comparative review," Biosensors and Bioelectronics, Vol. 58, 287-307, 2014, doi: 10.1016/j.bios.2014.02.049.
    doi:10.1016/j.bios.2014.02.049

    15. Xie, Y., M. Zhang, and D. Dai, "Design rule of Mach-Zehnder interferometer sensors for ultra-high sensitivity," Sensors (Switzerland), Vol. 20, 1-8, 2020, doi: 10.3390/s20092640.

    16. Wang, F., S. Ma, T. Ma, X. Wang, K. Yu, and L. Li, "Refractive index sensing performances of a mid-infrared asymmetric MZI based on suspended GaAs waveguides," Progress In Electromagnetics Research M, Vol. 111, 173-183, 2022.
    doi:10.2528/PIERM22033101

    17. Casquel, R., M. Holgado, M. F. Laguna, A. L. Hernández, B. Santamaría, Á. Lavín, L. Tramarin, and P. Herreros, "Engineering vertically interrogated interferometric sensors for optical label-free biosensing," Analytical and Bioanalytical Chemistry, Vol. 412, 3285-3297, 2020, doi: 10.1007/S00216-020-02411-3.
    doi:10.1007/s00216-020-02411-3

    18. Savra, E., A. Malainou, A. Salapatas, A. Botsialas, P. Petrou, I. Raptis, E. Makarona, S. E. Kakabakos, and K. Misiakos, "Monolithically-integrated Young interferometers for label-free and multiplexed detection of biomolecules," Silicon Photonics XI, Vol. 9752, 97520N, 2016, doi: 10.1117/12.2209011.

    19. Makarona, E., A. Salapatas, I. Raptis, P. Petrou, S. Kakabakos, E. Stavra, A. Malainou, and K. Misiakos, "Broadband Young interferometry for simultaneous dual polarization bioanalytics," J. Opt. Soc. Am. B, Vol. 34, 1691, 2017, doi: 10.1364/josab.34.001691.
    doi:10.1364/JOSAB.34.001691

    20. Dyson, J., "Very stable common-path interferometers and applications," J. Opt. Soc. Am., Vol. 53, 690, 1963, doi: 10.1364/josa.53.000690.
    doi:10.1364/JOSA.53.000690

    21. Stamm, C. and W. Lukosz, "Integrated optical difference interferometer as immunosensor," Sensors and Actuators B: Chemical, Vol. 31, 203-207, 1996, doi: 10.1016/0925-4005(96)80067-0.
    doi:10.1016/0925-4005(96)80067-0

    22. Tyszkiewicz, C., T. Pustelny, and T. Pustelny, "Differential interferometry in planar waveguide structures with ferronematic layer Special Issue ``Design and Application of Modern Evanescent Wave Photonic Sensors" in special the issue of Photonics (ISSN 2304-6732) View project maciej.setkiewicz@polsl.pl View project 56 PUBLICATIONS 307 CITATIONS SEE PROFILE Differential interferometry in planar waveguide structures with ferronematic layer," Optica Applicata, Vol. XXXIV, 2004.

    23. Boudrioua, A., "Photonic waveguides: Theory and applications," Photonic Waveguides: Theory and Applications, Wiley-ISTE, 2009, doi: 10.1002/9780470611142.

    24. El-Agez, T. and S. Taya, "Theoretical spectroscopic scan of the sensitivity of asymmetric slab waveguide sensors," Optica Applicata, Vol. 41, 90-95, 2011.

    25. Lukosz, W. and C. Stamm, "Integrated optical interferometer as relative humidity sensor and differential refractometer," Sensors and Actuators A: Physical, Vol. 25, 185-188, 1990, doi: 10.1016/0924-4247(90)87029-I.
    doi:10.1016/0924-4247(90)87029-I

    26. Stamm, C. and W. Lukosz, "Integrated optical difference interferometer as refractometer and chemical sensor," Sensors and Actuators B: Chemical, Vol. 11, 177-181, 1993, doi: 10.1016/0925-4005(93)85252-6.
    doi:10.1016/0925-4005(93)85252-6

    27. Daimon, M. and A. Masumura, "Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region," Applied Optics, Vol. 46, 3811-3820, 2007, doi: 10.1364/AO.46.003811.
    doi:10.1364/AO.46.003811