Vol. 124

Latest Volume
All Volumes
All Issues
2022-09-12

Finite-Aperture Microwave Bessel Beams with Vortex Twisting, Fracturing, and Dynamic Phase-Shift Control

By Vladimir Borisovich Yurchenko, Mehmet Ciydem, and Sencer Koc
Progress In Electromagnetics Research C, Vol. 124, 53-68, 2022
doi:10.2528/PIERC22071106

Abstract

Finite-aperture microwave vortex beams of various structures in the near-, middle-, and far-field propagation zones have been simulated. The decay of external sidelobes leading to the end of non-diffractive propagation within a fraction of the near-field zone is observed. A ring source of the vortex beams with phase-shift and frequency-sweep control of angular modes and polarization patterns through the use of patch antenna arrays of varying polarization is suggested. A new form of the beam wavefront variation with azimuthal undulation has been proposed that allows one to significantly diversify and dynamically control the beam structure. The consequences of a limited number of antenna patches in a circular array have been considered. The effects of a gradual drop of radiation power along the array and the use of multiple feed points for improving the beams have been simulated.

Citation


Vladimir Borisovich Yurchenko, Mehmet Ciydem, and Sencer Koc, "Finite-Aperture Microwave Bessel Beams with Vortex Twisting, Fracturing, and Dynamic Phase-Shift Control," Progress In Electromagnetics Research C, Vol. 124, 53-68, 2022.
doi:10.2528/PIERC22071106
http://jpier.org/PIERC/pier.php?paper=22071106

References


    1. Shen, Y., X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, and X. Yuan, "Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities," Light: Science & Applications, Vol. 8, Article number: 90, 2019.
    doi:10.1038/s41377-019-0194-2

    2. Lee, D., H. Sasaki, H. Fukumoto, K. Hiraga, and T. Nakagawa, "Orbital Angular Momentum (OAM) multiplexing: An enabler of a new era of wireless communications," IEICE Trans. Commun., Vol. E100-B, 1044-1063, 2017.
    doi:10.1587/transcom.2016SCI0001

    3. Mao, F., M, Huang, J. Yang, C. Yang, T. Li, and J. Zhang, "Capacity performance of wireless OAM-based massive MIMO system," Progress In Electromagnetics Research M, Vol. 82, 149-156, 2019.
    doi:10.2528/PIERM19030701

    4. Chen, R., H. Zhou, M. Moretti, X. Wang, and J. Li, "Orbital angular momentum waves: Generation, detection, and emerging applications," IEEE Commun. Surveys Tuts., Vol. 22, 840-868, 2020.
    doi:10.1109/COMST.2019.2952453

    5. Zheng, F., Y. Chen, S, Ji, and G. Duan, "Research status and prospects of orbital angular momentum technology in wireless communication," Progress In Electromagnetics Research, Vol. 168, 113-132, 2020.
    doi:10.2528/PIER20091104

    6. Yagi, Y., H. Sasaki, T. Yamada, and D. Lee, "200 Gb/s wireless transmission using dual-polarized OAM-MIMO multiplexing with uniform circular array on 28 GHz band," IEEE Antennas Wireless Propag. Lett., Vol. 20, 833-837, 2021.
    doi:10.1109/LAWP.2021.3065098

    7. Varzakas, P., "Average channel capacity for Rayleigh fading spread spectrum MIMO systems," International Journal of Communication Systems, Vol. 19, 1081-1087, 2006.
    doi:10.1002/dac.784

    8. Liu, K., Y. Cheng, X. Li, H. Wang, Y. Qin, and Y. Jiang, "Study on the theory and method of vortex-electromagnetic-wave-based radar imaging," IET Microwaves Antennas and Propagation, Vol. 10, 961-968, 2016.
    doi:10.1049/iet-map.2015.0842

    9. Tang, B., J. Bai, and K.-Y. Guo, "Bi-target tracking based on vortex wave with orbital angular momentum," Progress In Electromagnetics Research C, Vol. 74, 123-129, 2017.
    doi:10.2528/PIERC17030607

    10. Fang, Y., J. Chen, P. Wang, C. Li, and W. Liu, "A novel image formation method for electromagnetic vortex SAR with orbital-angular-momentum," Progress In Electromagnetics Research M, Vol. 82, 129-137, 2019.
    doi:10.2528/PIERM19011704

    11. Zhang, K., Y. Wang, Y. Yuan, and S. N. Burokur, "A review of orbital angular momentum vortex beams generation: from traditional methods to metasurfaces," Appl. Sci., Vol. 10, 1015, 2020.
    doi:10.3390/app10031015

    12. Byun, W.-J., B. S. Kim, Y.-S. Lee, M. S. Kang, K. S. Kim, and Y. H. Cho, "Simple generation of orbital angular momentum modes with azimuthally deformed Cassegrain subreflector," Electron. Lett., Vol. 51, No. 19, 1480-1482, 2015.
    doi:10.1049/el.2015.1833

    13. Zheng, S., X. Hui, X. Jin, H. Chi, and X. Zhang, "Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1530-1536, 2015.
    doi:10.1109/TAP.2015.2393885

    14. Liu, W., H. Cheng, J. Tian, and S. Chen, "Diffractive metalens: From fundamentals, practical applications to current trends," Advances in Physics: X, Vol. 5, No. 1, 1742584, 2020.
    doi:10.1080/23746149.2020.1742584

    15. Zhang, K., Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, "Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region," Opt. Express, Vol. 26, No. 2, 1351-1360, 2018.
    doi:10.1364/OE.26.001351

    16. Li, J.-S. and J.-Z. Chen, "Multi-beam and multi-mode orbital angular momentum by utilizing a single metasurface," Opt. Express, Vol. 29, No. 17, 27332-27339, 2021.
    doi:10.1364/OE.434206

    17. Huang, H.-F. and H.-M. Huang, "Millimeter-wave wideband high efficiency circular Airy OAM multibeams with multiplexing OAM modes based on transmission metasurfaces," Progress In Electromagnetics Research, Vol. 173, 151-159, 2022.
    doi:10.2528/PIER22022405

    18. Mohammadi, S. M., L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, "Orbital angular momentum in radio --- A system study," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 565-572, 2010.
    doi:10.1109/TAP.2009.2037701

    19. Mazzinghi, A., M. Balma, D. Devona, G. Guarnieri, G. Mauriello, M. Albani, and A. Freni, "Large depth of field pseudo-Bessel beam generation with a RLSA antenna," IEEE Trans. Antennas Propag., Vol. 62, 3911-3919, 2014.
    doi:10.1109/TAP.2014.2324557

    20. Wei, W., K. Mahdjoubi, C. Brousseau, and O. Emile, "Generation of OAM waves with circular phase shifter and array of patch antennas," Electron. Lett., Vol. 51, No. 6, 441-443, 2015.
    doi:10.1049/el.2014.4425

    21. Liu, K., H. Liu, Y. Qin, Y. Cheng, S. Wang, X. Li, and H. Wang, "Generation of OAM beams using phased array in the microwave band," IEEE Trans. Antennas Propag., Vol. 64, 3850-3857, 2016.
    doi:10.1109/TAP.2016.2589960

    22. Lin, M., Y. Gao, P. Liu, and J. Liu, "Theoretical analyses and design of circular array to generate orbital angular momentum," IEEE Trans. Antennas Propag., Vol. 65, No. 7, 3510-3519, 2017.
    doi:10.1109/TAP.2017.2700160

    23. Liu, D., L. Gui, Z. Zhang, H. Chen, G. Song, and T. Jiang, "Multiplexed OAM wave communication with two-OAM-mode antenna systems," IEEE Access, Vol. 7, 4160-4166, 2019.
    doi:10.1109/ACCESS.2018.2886553

    24. Padgett, M. J., F. M. Miatto, M. P. J. Lavery, A. Zeilinger, and R. W. Boyd, "Divergence of an orbital-angular-momentum-carrying beam upon propagation," New J. Phys., Vol. 17, 023011, 2015.
    doi:10.1088/1367-2630/17/2/023011

    25. Xu, J., K. Bi, R. Zhang, Y. Hao, C. Lan, K. D. McDonald-Maier, X. Zhai, Z. Zhang, and S. Huang, "A small-divergence-angle orbital angular momentum metasurface antenna," AAAS Research, Vol. 2019, Article ID 9686213, 2019.
    doi:10.34133/2019/9686213

    26. Fuscaldo, W., A. Benedetti, D. Comite, P. Burghignoli, P. Baccarelli, and A. Galli, "Microwave synthesis of Bessel, Bessel-Gauss, and Gaussian beams: A fully vectorial electromagnetic approach," Int. J. Microwave Wireless Technol., Vol. 13, 509-516, 2021.
    doi:10.1017/S1759078720001798

    27. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.

    28. Maffei, B., F. Noviello, J. A. Murphy, P. A. R. Ade, J.-M. Lamarre, F. R. Bouchet, J. Brossard, A. Catalano, R. Colgan, R. Gispert, E. Gleeson, C. V. Haynes, W. C. Jones, A. E. Lange, Y. Longval, I. McAuley, F. Pajot, T. Peacocke, G. Pisano, J.-L. Puget, I. Ristorcelli, G. Savini, R. Sudiwala, R. J. Wylde, and V. Yurchenko, "Planck pre-launch status: HFI beam expectations from the optical optimisation of the focal plane," Astron. Astrophys., Vol. 520, A12, 2010.
    doi:10.1051/0004-6361/200912999

    29. Rosset, C., V. B. Yurchenko, J. Delabrouille, J. Kaplan, Y. Giraud-Heraud, J.-M. Lamarre, and J. A. Murphy, "Beam mismatch effects in cosmic microwave background polarization measurements," Astronomy and Astrophysics, Vol. 464, No. 1, 405-415, 2007.
    doi:10.1051/0004-6361:20042230

    30. Yurchenko, V. B. and J.-M. Lamarre, "Efficient computation of the broadband beam sidelobes exemplified by the Planck high-frequency instrument," J. Opt. Soc. Am. A, Vol. 22, No. 12, 2838-2846, 2005.
    doi:10.1364/JOSAA.22.002838

    31. Yurchenko, V. B., J. A. Murphy, and J.-M. Lamarre, "Fast physical optics simulations of the multi-beam dual-reflector submillimeter-wave telescope on the ESA Planck Surveyor," International Journal of Infrared and Millimeter Waves, Vol. 22, No. 1, 173-184, 2001.
    doi:10.1023/A:1010778007547

    32. Hernandez-Figueroa, H. E., M. Zamboni-Rached, and E. Recami, Eds., Localized Waves, Wiley-Interscience, IEEE Press, Hoboken, N.J., 2008.
    doi:10.1002/9780470168981

    33. Albani, M., S. C. Pavone, M. Casaletti, and M. Ettorre, "Generation of non-diffractive Bessel beams by inward cylindrical traveling wave aperture distributions," Opt. Express, Vol. 22, No. 15, 18354-18364, 2014.
    doi:10.1364/OE.22.018354

    34. Ciydem, M. and E. A. Miran, "Dual polarization wideband sub-6 GHz suspended patch antenna for 5G base station," IEEE Antennas Wireless Propag. Lett., Vol. 19, 1142-1146, 2020.
    doi:10.1109/LAWP.2020.2991967