Vol. 124
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-09-23
A Preference Multi-Objective Optimization Method for Asymmetric External Rotor Switched Reluctance Motor
By
Progress In Electromagnetics Research C, Vol. 124, 179-196, 2022
Abstract
To improve the performance (low torque ripple, high average torque and high efficiency) of the external rotor switched reluctance motor (ERSRM), a preference multi-objective optimization framework for design and control of an ERSRM based on CD-NSGA-II (Chi-square distance fast non-dominated sorting genetic algorithm) with gradient targets is investigated. Firstly, the structure of the ERSRM is introduced, and the comprehensive sensitive analysis that evaluates the influence of each design variable on optimization objectives is presented. Secondly, the initialization of population, cross-mutation method and sorting method of conventional NSGA-II are improved. Then, the practicability of this method was proved by standard test functions. Finally, the NSGA-II and CD-NSGA2-II are combined with the visual basic script (VBS) script to optimize the ERSRM, respectively. Finite-element analysis results confirmed the validity and superiority of the optimized design.
Citation
Chaozhi Huang, Hongwei Yuan, Yuliang Wu, Yongmin Geng, and Wensheng Cao, "A Preference Multi-Objective Optimization Method for Asymmetric External Rotor Switched Reluctance Motor," Progress In Electromagnetics Research C, Vol. 124, 179-196, 2022.
doi:10.2528/PIERC22062402
References

1. Brock, H., B. Berker, and E. Ali, "Design of an external-rotor direct drive E-bike switched reluctance motor," IEEE Transactions on Vehicular Technology, Vol. 69, No. 3, 2552-2562, 2020.
doi:10.1109/TVT.2020.2965943

2. Lin, J. N., N. Schofield, and E. Ali, "External-rotor 6-10 switched reluctance motor for an electric bicycle," IEEE Transactions on Transportation Electrification, Vol. 1, No. 4, 348-356, 2015.
doi:10.1109/TTE.2015.2502543

3. Berker, B., H. Brock, D. Alan, et al. "Making the case for switched reluctance motors for propulsion applications," IEEE Transactions on Vehicular Technology, Vol. 69, No. 7, 7172-7186, 2020.
doi:10.1109/TVT.2020.2993725

4. Anvari, B., H. A. Toliyat, and B. Fahimi, "Simultaneous optimization of geometry and firing angles for in-wheel switched reluctance motor drive," Current Forestry Reports, Vol. 4, No. 1, 322-329, 2018.

5. Ma, C. and L. Y. Qu, "Multiobjective optimization of switched reluctance motors based on design of experiments and particle swarm optimization," IEEE Transactions on Energy Conversion, Vol. 30, No. 3, 1144-1153, 2015.
doi:10.1109/TEC.2015.2411677

6. Zhang, Z., S. H. Rao, and X. Zhang, "Performance prediction of switched reluctance motor using improved generalized regression neural networks for design optimization," China Electrotechnical Society Transactions on Electrical Machines and Systems, Vol. 2, No. 4, 371-376, 2018.
doi:10.30941/CESTEMS.2018.00047

7. Xia, B., Z. Ren, Y. L. Zhang, and C. Koh, "An adaptive optimization algorithm based on kriging interpolation with spherical model and its application to optimal design of switched reluctance motor," Journal of Electrical Engineering and Technology, Vol. 9, No. 5, 1544-1550, 2014.
doi:10.5370/JEET.2014.9.5.1544

8. Hua, Y. Z., H. Q. Zhu, M. Gao, and Z. Ji, "Multi-objective optimization design of permanent magnet assisted bearingless synchronous reluctance motor using NSGA-II," IEEE Transactions on Industrial Electronics, Vol. 68, No. 11, 10477-10487, 2020.
doi:10.1109/TIE.2020.3037873

9. Nagarajan, V. S., B. Mahadevan, V. Kamaraj, et al. "Design optimization of ferrite assisted synchronous reluctance motor using multi-objective differential evolution algorithm," The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 36, No. 1, 219-239, 2017.
doi:10.1108/COMPEL-06-2016-0253

10. Mohamed, E., A. Mohamed, R. Hegazy, and N. I. Mohamed, "Finite element based overall optimization of switched reluctance motor using multi-objective genetic algorithm (Nsga-II)," Mathematics, Vol. 9, No. 5, 1-20, 2021.

11. Rong, T., L. Ke, D. Wei, Y. T. Wang, et al. "Reference point based multi-objective optimization of reservoir operation: A comparison of three algorithms," Water Resources Management, Vol. 34, No. 3, 1005-1020, 2020.
doi:10.1007/s11269-020-02485-9

12. Hu, J., G. Yu, J. H. Zheng, and J. Zou, "A preference-based multi-objective evolutionary algorithm using preference selection radius," Soft Computing --- A Fusion of Foundations, Methodologies & Applications, Vol. 21, No. 17, 5025-5051, 2017.

13. Wang, L. P., M. L. Zhang, F. Y. Qiu, and B. Jiang, "Many-objective optimization algorithm with preference based on the angle penalty distance elite selection strategy," Jisuanji Xuebao/Chinese Journal of Computers, Vol. 41, No. 1, 236-253, 2018.

14. Wang, S. F., J. H. Zheng, J. J. Hu, J. Zou, and G. Yu, "Multi-objective evolutionary algorithm for adaptive preference radius to divide region," Journal of Software, Vol. 28, No. 10, 2704-2721, 2017.

15. Molina, J., L. V. Santana, A. G. Hernandez-Diaz, C. A. Coello Coello, and R. Caballero, "g-dominance: Reference point based dominance for multiobjective metaheuristics," European Journal of Operational Research, Vol. 197, No. 2, 685-692, 2009.
doi:10.1016/j.ejor.2008.07.015

16. Said, B. L., S. Bechikh, and K. Ghedira, "The r-dominance: A new dominance relation for interactive evolutionary multicriteria decision making," IEEE Transactions on Evolutionary Computation, Vol. 14, No. 5, 801-818, 2010.
doi:10.1109/TEVC.2010.2041060

17. Li, K., Q. Zhang, S. Kwong, M. Li, and R. Wang, "Stable matching-based selection in evolutionary multiobjective optimization," IEEE Transactions on Evolutionary Computation, Vol. 18, No. 6, 909-923, 2014.
doi:10.1109/TEVC.2013.2286492

18. Lei, G., C. Liu, J. Zhu, and Y. Guo, "Techniques for multilevel design optimization of permanent magnet motors," IEEE Transactions on Energy Conversion, Vol. 30, No. 4, 1574-1584, 2015.
doi:10.1109/TEC.2015.2444434

19. Lei, G., W. Xu, J. Hu, J. Zhu, Y. Guo, and K. Shao, "Multilevel design optimization of a FSPMM drive system by using sequential subspace optimization method," IEEE Transactions on Magnetics, Vol. 50, No. 2, 685-688, 2014.
doi:10.1109/TMAG.2013.2282363

20. Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, 182-197, 2002.
doi:10.1109/4235.996017

21. Altinoz, O. T., A. E. Yilmaz, and G. W.Weber, "Improvement of the gravitational search algorithm by means of low-discrepancy sobol quasi random-number sequence based initialization," Advances in Electrical and Computer Engineering, Vol. 14, No. 3, 55-62, 2014.
doi:10.4316/AECE.2014.03007

22. Navid, A., S. Khalilarya, and M. Abbasi, "Diesel engine optimization with multi-objective performance characteristics by non-evolutionary Nelder-Mead algorithm: Sobol sequence and Latin hypercube sampling methods comparison in DoE process," Fuel, Vol. 228, 349-367, 2018.
doi:10.1016/j.fuel.2018.04.142

23. Kumar, A. and S. Devi, "Novel center symmetric local binary pattern and chi square fuzzy c-mean clustering based segmentation in medical imaging technique," International Journal of Scientific and Technology Research, Vol. 8, No. 7, 697-705, 2019.

24. Seong, J. H. and D. H. Seo, "Wi-Fi fingerprint using radio map model based on MDLP and euclidean distance based on the Chi squared test," Wireless Networks, Vol. 25, No. 6, 3019-3027, 2019.
doi:10.1007/s11276-018-1700-9

25. Mohammadi, A., M. N. Omidvar, and X. Li, "A new performance metric for user-preference based multi-objective evolutionary algorithms," IEEE Congress on Evolutionary Computation: CEC 2013, Vol. 4, 2564-3418, 2013.

26. Bosman, P. A. N. and D. Thierens, "The balance between proximity and diversity in multiobjective evolutionary algorithms," IEEE Transactions on Evolutionary Computation, Vol. 7, No. 2, 174-188, 2003.
doi:10.1109/TEVC.2003.810761