Vol. 124

Latest Volume
All Volumes
All Issues
2022-09-22

Dual Lens Focusing System with in-Lens Polarizer for Automotive Radar Sensors

By Neşem Keskin and Nurhan Türker Tokan
Progress In Electromagnetics Research C, Vol. 124, 155-165, 2022
doi:10.2528/PIERC22062004

Abstract

This article presents a circularly polarized (CP) dual lens (DL) antenna with high gain and wide axial ratio (AR) bandwidth for automotive radar applications. Proposed antenna system provides low AR and scan loss over a wide angular range. It consists of a linearly polarized (LP), wide band, aperture coupled planar feed antenna, an extended hemispherical lens and a planoconvex lens with thin parallel plates and air slabs. In-lens polarizer mounted to the flat surface of the planoconvex lens converts LP wave to CP state. Fundamental design rules to obtain CP is defined. A CP DL design in low dielectric permittivity material (εr=3) is introduced. It achieves simulated efficiency that varies between 75 and 82% within the 77-81 GHz automotive radar band. AR is below 2.2 dB for all scan angles up to 25˚. Realized gain at boresight radiation is 25.6 dBic at the center frequency. 0.85 dB scan loss is observed at ±30˚ scan angle. A frequency-scaled prototype has been fabricated by additive manufacturing process with fused deposition modeling, and the concept is proved by the experimental results in 22-28 GHz band.

Citation


Neşem Keskin and Nurhan Türker Tokan, "Dual Lens Focusing System with in-Lens Polarizer for Automotive Radar Sensors," Progress In Electromagnetics Research C, Vol. 124, 155-165, 2022.
doi:10.2528/PIERC22062004
http://jpier.org/PIERC/pier.php?paper=22062004

References


    1. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Commun. Mag., Vol. 49, No. 6, 101-107, Jun. 2011.
    doi:10.1109/MCOM.2011.5783993

    2. Rappaport, T. S., et al., "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, May 2013.
    doi:10.1109/ACCESS.2013.2260813

    3. Roh, W., et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Commun. Mag., Vol. 52, No. 2, 106-113, Feb. 2014.
    doi:10.1109/MCOM.2014.6736750

    4. Yang, B., Z. Yu, J. Lan, R. Zhang, J. Zhou, and W. Hong, "Digital beamforming-based massive MIMO transceiver for 5G millimeter-wave communications," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 7, 3403-3418, Jul. 2018.
    doi:10.1109/TMTT.2018.2829702

    5. Campo, M. A., G. Carluccio, D. Blanco, O. Litschke, S. Bruni, and N. Llombart, "Wideband circularly polarized antenna with in-lens polarizer for high-speed communications," IEEE Trans. Antennas Propag., Vol. 69, No. 1, 43-54, Jan. 2021, doi: 10.1109/TAP.2020.3008638.
    doi:10.1109/TAP.2020.3008638

    6. Hong, W., et al., "Multibeam antenna technologies for 5G wireless communications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6231-6249, Dec. 2017.
    doi:10.1109/TAP.2017.2712819

    7. Wang, C., J. Wu, and Y. Guo, "A 3-D-printed multibeam dual circularly polarized luneburg lens antenna based on quasi-icosahedron models for Ka-band wireless applications," IEEE Trans. Antennas Propag., Vol. 68, No. 8, 5807-5815, Aug. 2020.
    doi:10.1109/TAP.2020.2983798

    8. Wu, X., G. V. Eleftheriades, and T. E. van Deventer-Perkins, "Design and characterization of single- and multiple-beam mm-Wave circularly polarized substrate lens antennas for wireless communications," IEEE Trans. Microw. Theory Techn., Vol. 49, No. 3, 431-441, 2001.
    doi:10.1109/22.910546

    9. Fernandes, C. A., "Shaped-beam antennas," Handbook of Antennas in Wireless Communications, L. Godara, Ed., Ch. 15, CRC Press, New York, 2002.

    10. Godi, G., R. Sauleau, and D. Thouroude, "Performance of reduced size substrate lens antennas for millimeter-wave communications," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1278-1286, Apr. 2005.
    doi:10.1109/TAP.2005.844420

    11. Costa, J. R., C. A. Fernandes, G. Godi, R. Sauleau, L. Le Coq, and H. Legay, "Compact Ka-band lens antennas for LEO satellites," IEEE Trans. Antennas Propag., Vol. 56, No. 5, 1251-1258, May 2008.
    doi:10.1109/TAP.2008.922690

    12. Neto, A., "UWB, non-dispersive radiation from the planarly fed leaky lens antenna --- Part 1: Theory and design," IEEE Trans. Antennas Propag., Vol. 58, No. 7, 2238-2247, Jul. 2010.
    doi:10.1109/TAP.2010.2048879

    13. Nguyen, N. T., N. Delhote, M. Ettorre, D. Baillargeat, L. Le Coq, and R. Sauleau, "Design and characterization of 60-GHz integrated lens antennas fabricated through ceramic stereolithography," IEEE Trans. Antennas Propag., Vol. 58, No. 8, 2757-2762, Aug. 2010.
    doi:10.1109/TAP.2010.2050447

    14. Nguyen, N. T., R. Sauleau, and L. Le Coq, "Reduced-size double-shell lens antenna with flat-top radiation pattern for indoor communications at millimeter waves," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2424-2429, Jun. 2011.
    doi:10.1109/TAP.2011.2144554

    15. Filipovic, D. F., S. S. Gearhart, and G. M. Rebeiz, "Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses," IEEE Trans. Microw. Theory Techn., Vol. 41, No. 10, 1738-1749, Oct. 1993.
    doi:10.1109/22.247919

    16. Van Rudd, J. and D. M. Mittleman, "Influence of substrate-lens design in terahertz time-domain spectroscopy," J. Opt. Soc. Am. A, Vol. 19, No. 2, 319-328, 2002.
    doi:10.1364/JOSAB.19.000319

    17. Fernandes, C., E. B. Lima, and J. R. Costa, "Broadband integrated lens for illuminating reflector antenna with constant aperture efficiency," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 3805-3813, 2010.
    doi:10.1109/TAP.2010.2078463

    18. Raman, S., N. S. Barker, and G. M. Rebeiz, "A W-band dielectric lens based integrated monopulse radar receiver," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 12, 2308-2316, 1998.
    doi:10.1109/22.739216

    19. Nguyen, N. T., R. Sauleau, M. Ettorre, and L. Le Coq, "Focal array fed dielectric lenses: An attractive solution for beam reconfiguration at millimeter waves," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2152-2159, 2011.
    doi:10.1109/TAP.2011.2144550

    20. Nguyen, N. T., A. V. Boriskin, L. Le Coq, and R. Sauleau, "Improvement of the scanning performance of the extended hemispherical integrated lens antenna using a double lens focusing system," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3698-3702, Aug. 2016, doi: 10.1109/TAP.2016.2572227.
    doi:10.1109/TAP.2016.2572227

    21. Yoneda, N., R. Miyazaki, I. Matsumura, and M. Yamato, "A design of novel grooved circular waveguide polarizers," IEEE Trans. Microw. Theory Techn., Vol. 48, No. 12, 2446-2452, Dec. 2000.
    doi:10.1109/22.898996

    22. Wang, S.-W., C.-H. Chien, C.-L. Wang, and R.-B. Wu, "A circular polarizer designed with a dielectric septum loading," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 7, 1719-172, Jul. 2004.
    doi:10.1109/TMTT.2004.830487

    23. Letizia, M., B. Fuchs, A. Skrivervik, and J. R. Mosig, "Circularly polarized homogeneous lens antenna system providing multibeam radiation pattern for HAPS," Radio Sci. Bull., Vol. 332, 18-28, Mar. 2010.

    24. Cai, Y., Y. Zhang, Z. Qian, W. Cao, and S. Shi, "Compact wideband dual circularly polarized substrate integrated waveguide horn antenna," IEEE Trans. Antennas Propag., Vol. 64, No. 7, 3184-3189, Jul. 2016.
    doi:10.1109/TAP.2016.2554627

    25. Farooqui, M. F. and A. Shamim, "3-D inkjet-printed helical antenna with integrated lens," IEEE Antennas Wireless Propag. Lett., Vol. 16, No. 8, 800-803, Aug. 2016.

    26. Sammeta, R. and D. S. Filipovic, "Improved efficiency lens-loaded cavity-backed transmit sinuous antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6000-6009, Dec. 2014.
    doi:10.1109/TAP.2014.2365232

    27. Xue, L. and V. Fusco, "Polarisation insensitive planar dielectric slab waveguide extended hemi-elliptical lens," IET Microw., Antennas Propag., Vol. 2, No. 4, 312-315, Jun. 2008.
    doi:10.1049/iet-map:20070194

    28. Shi, Z., S. Yang, S.-W. Qu, and Y. Chen, "Circularly polarised planar Luneberg lens antenna for mm-Wave wireless communication," Electron. Lett., Vol. 52, No. 15, 1281-1282, 2016.
    doi:10.1049/el.2016.1524

    29. Wang, K. X. and H. Wong, "Design of a wideband circularly polarized millimeter-wave antenna with an extended hemispherical lens," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4303-4308, Aug. 2018.
    doi:10.1109/TAP.2018.2841414

    30. Ozpinar, H., S. Aksimsek, and N. T. Tokan, "A novel compact, broadband, high gain millimeter-wave antenna for 5G beam steering applications," IEEE Trans. on Vehicular Techn., Vol. 69, No. 3, 2389-2397, Mar. 2020.
    doi:10.1109/TVT.2020.2966009

    31. Sönmez, N., F. Tokan, and N. Tokan, "Double lens antennas in millimeter-wave automotive radar sensors," Applied Comp. Electromag. Soc. Journal, Vol. 32, 901-907, 2017.

    32. Pan, Y. M. and K. W. Leung, "Wideband circularly polarized dielectric bird-nest antenna with conical radiation pattern," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 563-570, Feb. 2013.
    doi:10.1109/TAP.2012.2220101

    33. Born, M. and E. Wolf, Principles of Optics, 705-708, Pergamon, London, U.K., 1980.

    34. Wang, K. X. and H. Wong, "A wideband millimeter-wave circularly polarized antenna with 3-D printed polarizer," IEEE Trans. Antennas Propag., Vol. 65, No. 3, 1038-1046, Mar. 2017.
    doi:10.1109/TAP.2016.2647693

    35. Alcep, M. and F. Tokan, "Impedance matching technique with perforated, inhomogeneous layers for broadband dielectric lenses," IEEE Sensors Journal, Vol. 21, No. 18, 20018-20026, Sept. 2021.
    doi:10.1109/JSEN.2021.3100640