Vol. 122

Latest Volume
All Volumes
All Issues
2022-08-09

Synthesizing Radiation Properties of Dual-Band Dual-Mode High Gain Dielectric Resonator Antenna for Wireless Applications

By Juin Acharjee, Shreya Chatterjee, Nipun Kumar Mishra, Gouri Shankar Paul, and Kaushik Mandal
Progress In Electromagnetics Research C, Vol. 122, 153-164, 2022
doi:10.2528/PIERC22053102

Abstract

In this article, the radiation properties of a slot-loaded cylindrical dielectric resonator antenna (CDRA) have been synthesized strategically to realize a dual-band operation with a higher gain. A microstrip line based aperture coupled feed is adopted to excite dual modes at 4.8 GHz and 8.28 GHz with an impedance bandwidth of 5.84% (280 MHz) and 10.62% (880 MHz), respectively. A superstrate layer is placed at a suitable gap above the antenna structure to enhance the antenna gain by utilizing the principle of multiple reflections. For the further improvement of gain, a plus-shaped slot is incorporated on the superstrate that helps to concentrate the radiated field at the center of the superstrate, thereby the directivity of the CDRA has been enhanced on a large scale. The proposed structure is fabricated and measured for experimental verifications that demonstrate 3 dB augmentations in antenna peak gain in comparison to the conventional CDRA. The experimental result shows a good agreement with the simulated ones. Higher measured peak gains of 7.87 dBi and 7.91 dBi at two operating bands ensure the applicability of the proposed simple structure for C-band high gain wireless applications.

Citation


Juin Acharjee, Shreya Chatterjee, Nipun Kumar Mishra, Gouri Shankar Paul, and Kaushik Mandal, "Synthesizing Radiation Properties of Dual-Band Dual-Mode High Gain Dielectric Resonator Antenna for Wireless Applications," Progress In Electromagnetics Research C, Vol. 122, 153-164, 2022.
doi:10.2528/PIERC22053102
http://jpier.org/PIERC/pier.php?paper=22053102

References


    1. Petosa, A., Dielectric Resonator Antenna Handbook, Artech House, 2007.

    2. Petosa, A. and A. Ittipiboon, "Dielectric resonator antenna: A historical review and the current state of art," IEEE Antennas Propag. Mag., Vol. 52, No. 5, 91-116, October 2010.
    doi:10.1109/MAP.2010.5687510

    3. Mongia, R. K. and A. Ittipoboon, "Theoretical and experimental investigations on rectangular dielectric resonator antennas," IEEE Trans. Antennas Propag., Vol. 45, No. 9, 1348-1356, 1997.
    doi:10.1109/8.623123

    4. Mukherjee, B., V. D. Kumar, and M. Gupta, "A novel hemispherical dielectric resonator antenna on an electromagnetic band gap substrate for broadband and high gain systems," AEU --- International Journal of Electronics and Communications, Vol. 68, 1185-1190, 2014.
    doi:10.1016/j.aeue.2014.06.007

    5. Esmaeili, M. and J. J. Laurin, "Polarization reconfigurable slot-fed cylindrical dielectric resonator antenna," Progress In Electromagnetics Research, Vol. 168, 61-71, 2020.
    doi:10.2528/PIER20041203

    6. Yang, W., A. Denidni, Q. Zeng, and G. Wei, "A wideband high-gain stacked cylindrical dielectric resonator antenna," Progress In Electromagnetic Research Letters, Vol. 53, 155-163, 2013.

    7. Mishra, N. K., S. Das, and D. K. Vishwakarma, "Beam steered linear array of cylindrical dielectric resonator antenna," AEU --- International Journal of Electronics and Communications, Vol. 98, 106-113, 2019.
    doi:10.1016/j.aeue.2018.11.011

    8. Mishra, N. K., J. Acharjee, V. Sharma, C. Tamrakar, and L. Dewangan, "Mutual coupling reduction between the cylindrical dielectric resonator antenna using split ring resonator based structure," AEU --- International Journal of Electronics and Communications, Vol. 154, 2022.

    9. Huynh, A. P., D. R. Jackson, S. A. Long, and D. R. Wilton, "A Study of the impedance and pattern bandwidths of probe-fed cylindrical dielectric resonator antennas," IEEE Antennas and Wireless Propag. Lett., Vol. 10, 1313-1316, 2011.
    doi:10.1109/LAWP.2011.2176307

    10. Bijumon, P. V., S. K. Menon, M. N. Suma, M. T. Sebastian, and P. Mohanan, "Broadband cylindrical dielectric resonator antenna excited by modified microstrip line," Electronics Lett., Vol. 41, No. 7, March 2005.
    doi:10.1049/el:20050090

    11. Avǎdǎnei, O. G., M. G. Banciu, I. Nicolaescu, and L. Nedelcu, "Superior modes in high permittivity cylindrical dielectric resonator antenna excited by a central rectangular slot," IEEE Transactions on Antennas and Propag., Vol. 60, No. 11, 5032-5038, November 2012.
    doi:10.1109/TAP.2012.2207692

    12. Buerkle, A., K. Sarabandi, and H. Mosallaei, "Compact slot and dielectric resonator antenna with dual-resonance, broband characteristics," IEEE Trans. on Antennas and Propag., Vol. 53, No. 03, 1020-1027, March 2005.
    doi:10.1109/TAP.2004.842681

    13. Mishra, N. K., S. Das, and D. K. Vishwakarma, "Low profile circularly polarized cylindrical dielectric resonator antenna coupled by L shaped resonating slot," Microw. and Opt. Tech. Lett., Vol. 59, No. 05, 996-1000, 2017.
    doi:10.1002/mop.30455

    14. Mishra, N. K., S. Das, and D. K. Vishwakarma, "Bandwidth enhancement of cylindrical dielectric resonator antenna using thin dielectric layer fed by resonating slot," Frequenz, Vol. 70, No. 9-10, 381-388, 2016.
    doi:10.1515/freq-2015-0188

    15. Buerkle, A., K. Sarabandi, and H. Mosallaei, "Compact slot and dielectric resonator antenna with dual-resonance, broband characteristics," IEEE Trans. on Antennas and Propag., Vol. 53, No. 03, 1020-1027, March 2005.
    doi:10.1109/TAP.2004.842681

    16. Ojha, A. K. and P. Kumar, "High gain broadside mode operation of a cylindrical dielectric resonator antenna using simple slot excitation," Int. Journal of Microw. and Wireless Tech., Vol. 13, No. 3, 286-294, 2021.
    doi:10.1017/S1759078720000677

    17. Al-Hasan, M. J., T. A. Denidni, and A. R. Sebak, "Millimeter-wave EBG-based aperture-coupled dielectric resonator antenna," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4354-4357, August 2013.
    doi:10.1109/TAP.2013.2262667

    18. Kim, T. and S. Pak, "Enhanced gain and miniaturization method of stacked dielectric resonator antenna using metallic cap," IET Microwaves, Antennas & Propagation, Vol. 13, No. 8, 1198-1201, July 2019.
    doi:10.1049/iet-map.2018.5606

    19. Kumar, P., S. Dwari, S. Singh, J. Kumar, and A. Kumar, "Conductor backed CPW-fed dual-mode excited high gain cylindrical cavity DRA for Unmanned Aircraft Systems (UAS) or drone data-link applications at C band," IETE Technical Review, 1-11, 2018.
    doi:10.1080/02564602.2018.1407056

    20. Wang, Y.-F., T. A. Denidni, Q.-S. Zeng, and G. Wei, "Design of high gain, broadband cylindrical dielectric resonator antenna," Electronics Lett., Vol. 49, 1506-1507, 2013.
    doi:10.1049/el.2013.2741

    21. Ballav, S., A. Chatterjee, and S. K. Parui, "Gain augmentation of a dual-band dielectric resonator antenna with frequency selective surface superstrate," International Journal of Microwave and Wireless Technologies, Vol. 31, No. 8, 2021.

    22. Dash, S. K., Q. S. Cheng, and T. Khan, "A superstrate loaded aperture coupled dual-band circularly polarized dielectric resonator antenna for X-band communications," Int. Journal of Microw. and Wireless Tech., Vol. 13, 867-874, October 2020.
    doi:10.1017/S1759078720001476

    23. Mishra, N. K., S. Das, and D. K. Vishwakarma, "Wideband high gain cylindrical dielectric resonator antenna for X-band applications," Frequenz, Vol. 73, 109-116, 2019.
    doi:10.1515/freq-2018-0092

    24. Dash, S. K. K. and T. Khan, "Wideband high gain conical dielectric resonator antenna: An experimental study of superstrate and reflector," Int. Journal of Microw. and Wireless Tech., Vol. 27, 1-10, 2017.

    25. Dutta, K., D. Guha, C. Kumar, and Y. M. Antar, "New approach in designing resonance cavity high-gain antenna using nontransparent conducting sheet as the superstrate," IEEE Trans. on Antennas and Propag., Vol. 63, 2807-2813, 2015.
    doi:10.1109/TAP.2015.2415518

    26. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, USA, 2000.
    doi:10.1002/0471723770