Vol. 120
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-05-05
A Novel Miniaturized Reconfigurable Microstrip Antenna Based Printed Metamaterial Circuitries for 5G Applications
By
Progress In Electromagnetics Research C, Vol. 120, 1-10, 2022
Abstract
A novel reconfigurable sub-6 GHz microstrip patch antenna operating at three resonant frequencies 3.6, 3.9, and 4.9 GHz is designed for 5G applications. The proposed antenna is constructed from metamaterial (MTM) array with a matching circuit printed around a printed strip line. The antenna is excited with a coplanar waveguide to achieve an excellent matching over a wide frequency band. The proposed antenna shows excellent performance in terms of S11, gain, and radiation pattern that are controlled well with two photo resistance. The proposed antenna shows different operating frequencies and radiation patterns after changing the of photo resistance status. The main antenna novelty is achieved by splitting the main lobe that tracks more than one user at same resonant frequency. Nevertheless, the main radiation lobe can be steered to the desired location by controlling the surface current motion using two varactor diodes on a matching circuit.
Citation
Hayder H. Al-Khaylani, Taha Ahmed Elwi, and Abdullahi Abdu Ibrahim, "A Novel Miniaturized Reconfigurable Microstrip Antenna Based Printed Metamaterial Circuitries for 5G Applications," Progress In Electromagnetics Research C, Vol. 120, 1-10, 2022.
doi:10.2528/PIERC22021503
References

1. Shafique, K., B. A. Khawaja, F. Sabir, S. Qazi, and M. Mustaqim, "Internet of Things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT scenarios," IEEE Access, Vol. 8, 23022-23040, 2020.
doi:10.1109/ACCESS.2020.2970118

2. Rappaport, T. S., Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal, A. Alkhateeb, and G. C. Trichopoulos, "Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond," IEEE Access, Vol. 7, 78729-78757, 2019.
doi:10.1109/ACCESS.2019.2921522

3. Zhou, L., Y. Jiao, Y. Qi, Z. Weng, and L. Lu, "Wideband ceiling-mount omnidirectional antenna for indoor distributed antenna systems," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 836-839, 2014.
doi:10.1109/LAWP.2014.2319087

4. Singhal, S. and A. K. Singh, "Modified Star-Star Fractal (MSSF) super-wideband antenna," Microw. Opt. Technol. Lett., Vol. 59, 624-630, 2017.
doi:10.1002/mop.30357

5. Waladi, V., N. Mohammadi, Y. Zehforoosh, A. Habashi, and J. Nourinia, "A novel Modified Star-Triangular Fractal (MSTF) monopole antenna for super-wideband applications," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 651-654, 2013.
doi:10.1109/LAWP.2013.2262571

6. Manohar, M., "Miniaturised low-profile super-wideband Koch snow ake fractal monopole slot antenna with improved BW and stabilised radiation pattern," IET Microw. Antennas Propag., Vol. 13, 1948-1954, 2019.
doi:10.1049/iet-map.2019.0116

7. Hussein, M. I., A. Hakam, and M. Ouda, "Planar ultra-wideband elliptical antenna for communication applications," Proceedings of the 2016 IEEE Wireless Communications and Networking Conference, 1-5, Doha, Qatar, April 3-6, 2016.

8. Liang, X.-L., S.-S. Zhong, and W. Wang, "Elliptical planar monopole antenna with extremely wide bandwidth," Electron. Lett., Vol. 42, 441-442, 2006.
doi:10.1049/el:20060438

9. Yan, X.-R., S.-S. Zhong, and X.-L. Liang, "Compact printed semi-elliptical monopole antenna for super-wideband applications," Microw. Opt. Technol. Lett., Vol. 49, 2061-2063, 2007.
doi:10.1002/mop.22644

10. Manohar, M., U. K. Nemani, R. S. Kshetrimayum, and A. K. Gogoi, "A novel super wideband notched printed trapezoidal monopole antenna with triangular tapered feedline," Proceedings of the 2014 International Conference on Signal Processing and Communications (SPCOM), 1-6, Bangalore, India, July 22-25, 2014.

11. Manohar, M., R. S. Kshetrimayum, and A. K. Gogoi, "A compact dual band-notched circular ring printed monopole antenna for super wideband applications," Radioengineering, Vol. 26, 64-70, 2017.
doi:10.13164/re.2017.0064

12. Dong, Y., W. Hong, L. Liu, Y. Zhang, and Z. Kuai, "Performance analysis of a printed super-wideband antenna," Microw. Opt. Technol. Lett., Vol. 51, 949-956, 2009.
doi:10.1002/mop.24222

13. Wang, Z., Y. Dong, and T. Itoh, "Transmission line metamaterial-inspired circularly polarized RFID antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 19, 964-968, 2020.
doi:10.1109/LAWP.2020.2984793

14. Cao, W., W. Ma, W. Peng, and Z. N. Chen, "Bandwidth-enhanced electrically large microstrip antenna loaded with SRR structures," IEEE Antennas Wirel. Propag. Lett., Vol. 18, 576-580, 2019.
doi:10.1109/LAWP.2019.2896384

15. Xu, L. and Y. J. Zhou, "Low profile high-gain antenna for broadband indoor distributed antenna system," Appl. Comput. Electromagn. Soc. J. (ACES), Vol. 35, 791-796, 2020.
doi:10.47037/2020.ACES.J.350903

16. Xu, H.-X., G.-M.Wang, J.-G. Liang, M. Q. Qi, and X. Gao, "Compact circularly polarized antennas combining meta-surfaces and strong space-filling meta-resonators," IEEE Trans. Antennas Propag., Vol. 61, 3442-3450, 2013.
doi:10.1109/TAP.2013.2255855

17. Abdulsattar, R. K., T. A. Elwi, and Z. A. Abdul Hassain, "A new microwave sensor based on the moore fractal structure to detect water content in crude oil," Sensors, Vol. 21, 7143, MDPI, 2021.
doi:10.3390/s21217143

18. Alaukally, M. N. N., T. A. Elwi, and D. C. Atilla, "Miniaturized flexible metamaterial antenna of circularly polarized high gain-bandwidth product for radio frequency energy harvesting," Int. J. Commun. Syst., 2021.

19. Ali, D., T. A. Elwi, and S. Ozbay, "Metamaterial-based printed circuit antenna for biomedical applications," European Journal of Science and Technology, Vol. 26, 12-15, 2021.

20., www.cst.com.

21., www.ansoft.com.