Vol. 118

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-03-03

Compact MIMO Antenna Designs Based on Hybrid Fractal Geometry for 5G Smartphone Applications

By Muhannad Y. Muhsin, Ali J. Salim, and Jawad K. Ali
Progress In Electromagnetics Research C, Vol. 118, 247-262, 2022
doi:10.2528/PIERC22012808

Abstract

Compact low-profile four and eight elements Multi-Input Multi-Output (MIMO) antenna arrays are presented for 5G smartphone devices. The proposed antenna systems can operate at two dual-wideband with triple resonance frequencies that cover the extended Personal Communication Purposes (PCS) n25 band and other related applications, the mobile china's band, and the LTE Band-46. The proposed antenna element is designed based on modified Minkowski and Peanocurves fractal geometries. Desirable antenna miniaturization with multi-band capability is obtained by utilizing the space-filling and self-similarity properties of the proposed hybrid fractal geometries where the overall antenna size is (11.47 mm × 7.19 mm). All antennas are printed on the surface layer of the main mobile board. Based on the self-isolated property, good isolation is attained without employing additional decoupling structures and/or isolation techniques, increasing system complexity and reducing antenna efficiency. For evaluating the performance of the proposed antenna systems, the scattering parameters, antenna efficiencies, antenna gains, antenna radiation characteristics, envelope correlation coefficients (ECCs) and mean effective gains (MEGs) are investigated. The performances are evaluated to confirm the suitability of the proposed MIMO antenna systems for 5G mobile terminals. The proposed eight elements MIMO system has been fabricated and tested. The measured and simulated results are in good agreement.

Citation


Muhannad Y. Muhsin, Ali J. Salim, and Jawad K. Ali, "Compact MIMO Antenna Designs Based on Hybrid Fractal Geometry for 5G Smartphone Applications," Progress In Electromagnetics Research C, Vol. 118, 247-262, 2022.
doi:10.2528/PIERC22012808
http://jpier.org/PIERC/pier.php?paper=22012808

References


    1. Han, C. Z., L. Xiao, Z. Chen, and T. Yuan, "Co-located self-neutralized handset antenna pairs with complementary radiation patterns for 5G MIMO applications," IEEE Access, Vol. 8, 73151-73163, 2020.
    doi:10.1109/ACCESS.2020.2988072

    2. Zhao, A. and Z. Ren, "Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 1, 152-156, 2019.
    doi:10.1109/LAWP.2018.2883428

    3. Varzakas, P., "Average channel capacity for Rayleigh fading spread spectrum MIMO systems," International Journal of Communication Systems, Vol. 19, No. 10, 1081-1087, 2006.
    doi:10.1002/dac.784

    4. Varzakas, P., "Estimation of optimum antennas number of a spread spectrum MIMO system under signal fading," WSEAS Transactions on Computers, Vol. 18, 281-284, 2019.

    5. Varzakas, P., "Closed-form expression for the optimum antennas number of a spread spectrum MIMO system under Rayleigh fading conditions," Proceedings of the 13th WSEAS International Conference on Communications, 56-59, Rodos, Greece, 2009.

    6. Muhsin, M. Y., A. J. Salim, and J. K. Ali, "A compact self-isolated MIMO antenna system for 5G mobile terminals," Computer Systems Science and Engineering, Vol. 42, No. 3, 919-934, 2022.
    doi:10.32604/csse.2022.023102

    7. Salim, A. J., R. S. Fyath, A. H. Ahmed, and J. K. Ali, "A new fractal based PIFA antenna design for MIMO dual band WLAN applications," PIERS Proceedings, 1526-1530, Kuala Lumpur, Malaysia, 2012.

    8. Zou, H., Y. Li, H. Shen, H. Wang, and G. Yang, "Design of 6 x 6 dualband MIMO antenna array for 4.5G/5G smartphone applications," Sixth Asia-Paci c Conference on Antennas and Propagation (APCAP), 1-3, Xi'an, China, 2017.

    9. Salim, A. J., R. S. Fyath, and J. K. Ali, "A new miniaturized folded fractal based PIFA antenna design for MIMO wireless applications," Proceedings of the International Conference on Information and Communication Technology, 36-40, Baghdad, Iraq, 2019.
    doi:10.1145/3321289.3321298

    10. Li, Y., C. Sim, Y. Luo, and G. Yang, "High-isolation 3.5 GHz eight-antenna MIMO array using balanced open-slot antenna element for 5G smartphones," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 3820-3830, 2019.
    doi:10.1109/TAP.2019.2902751

    11. Li, M., Y. Ban, Z. Xu, J. Guo, and Z. Yu, "Tri-polarized 12-antenna MIMO array for future 5G smartphone applications," IEEE Access, Vol. 6, 6160-6170, 2018.
    doi:10.1109/ACCESS.2017.2781705

    12. Ding, C. F., X. Y. Zhang, C. D. Xue, and C. Y. D. Sim, "Novel pattern-diversity-based decoupling method and its application to multi-element MIMO antenna," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 4976-4985, 2018.
    doi:10.1109/TAP.2018.2851380

    13. Abdullah, M., S. H. Kiani, and A. Iqbal, "Eight element Multiple-Input Multiple-Output (MIMO) antenna for 5G mobile applications," IEEE Access, Vol. 7, 134488-134495, 2019.
    doi:10.1109/ACCESS.2019.2941908

    14. Jiang, W., Y. Cui, B. Liu, W. Hu, and Y. Xi, "A dual-band MIMO antenna with enhanced isolation for 5G smartphone applications," IEEE Access, Vol. 7, 112554-112563, 2019.
    doi:10.1109/ACCESS.2019.2934892

    15. Parchin, N., et al., "Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications," IEEE Access, Vol. 7, 15612-15622, 2019.
    doi:10.1109/ACCESS.2019.2893112

    16. Hu, W., et al., "Dual-band ten-element MIMO array based on dual-mode IFAs for 5G terminal applications," IEEE Access, Vol. 7, 178476-178485, 2019.
    doi:10.1109/ACCESS.2019.2958745

    17. Guo, J., L. Cui, C. Li, and B. Sun, "Side-edge frame printed eight-port dual-band antenna array for 5G smartphone applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 7412-7417, 2018.
    doi:10.1109/TAP.2018.2872130

    18. Wong, K., J. Lu, L. Chen, W. Li, and Y. Ban, "8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone," Microwave and Optical Technology Letters, Vol. 58, No. 1, 174-181, 2016.
    doi:10.1002/mop.29527

    19. Qian, K. and D. Gan, "Compact tunable network for closely spaced antennas with high isolation," Microwave and Optical Technology Letters, Vol. 58, No. 1, 65-69, 2016.
    doi:10.1002/mop.29495

    20. Baek, J. and J. Choi, "The design of a LTE/MIMO antenna with high isolation using a decoupling network," Microwave and Optical Technology Letters, Vol. 56, No. 9, 2187-2191, 2014.
    doi:10.1002/mop.28551

    21. Hu, W., et al., "Dual-band eight-element MIMO array using multi-slot decoupling technique for 5G terminals," IEEE Access, Vol. 7, 153910-153920, 2019.
    doi:10.1109/ACCESS.2019.2948639

    22. Deng, J., J. Li, L. Zhao, and L. Guo, "A dual-band inverted-F MIMO antenna with enhanced isolation for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2270-2273, 2017.
    doi:10.1109/LAWP.2017.2713986

    23. Jiang, W., B. Liu, Y. Cui, and W. Hu, "High-isolation eight-element MIMO array for 5G smartphone applications," IEEE Access, Vol. 7, 34104-34112, 2019.
    doi:10.1109/ACCESS.2019.2904647

    24. Xu, H., H. Zhou, S. Gao, H. Wang, and Y. Cheng, "Multimode decoupling technique with independent tuning characteristic for mobile terminals," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6739-6751, 2017.
    doi:10.1109/TAP.2017.2754445

    25. Zhao, A. and Z. Ren, "Multiple-input and multiple-output antenna system with self-isolated antenna element for fifth-generation mobile terminals," Microwave and Optical Technology Letters, Vol. 61, No. 1, 20-27, 2019.
    doi:10.1002/mop.31515

    26. Salim, A. J. and J. K. Ali, "Design of internal dual band printed monopole antenna based on Peano-type fractal geometry for WLAN USB dongle," PIERS Proceedings, 1268-1272, Suzhou, China, 2011.

    27. Aziz, H. and D. Naji, "Compact dual-band MIMO antenna system for LTE smartphone applications," Progress In Electromagnetics Research C, Vol. 102, 13-30, 2020.
    doi:10.2528/PIERC20021101

    28. Cai, Q., Y. Li, X. Zhang, and W. Shen, "Wideband MIMO antenna array covering 3.3-7.1 GHz for 5G metal-rimmed smartphone applications," IEEE Access, Vol. 7, 142070-142084, 2019.
    doi:10.1109/ACCESS.2019.2944681

    29. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, Vol. 39, No. 9, 705-707, 2003.
    doi:10.1049/el:20030495

    30. Muhsin, M. Y., A. J. Salim, and J. K. Ali, "An eight-element MIMO antenna system for 5G mobile handsets," International Symposium on Networks, Computers and Communications (ISNCC), 1-4, Dubai, United Arab Emirates, 2021.

    31. Qin, Z., W. Geyi, M. Zhang, and J. Wang, "Printed eight-element MIMO system for compact and thin 5G mobile handest," Electronics Letters, Vol. 52, No. 6, 416-418, 2016.
    doi:10.1049/el.2015.3960

    32. Ren, Z. and A. Zhao, "Dual-band MIMO antenna with compact self-decoupled antenna pairs for 5G mobile applications," IEEE Access, Vol. 7, 82288-82296, 2019.
    doi:10.1109/ACCESS.2019.2923666

    33. Barani, I., K. Wong, Y. Zhang, and W. Li, "Low-profile wideband conjoined open-slot antennas fed by grounded coplanar waveguides for 4 x 4 5G MIMO operation," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 2646-2657, 2020.
    doi:10.1109/TAP.2019.2957967

    34. Zhao, A. and Z. Ren, "5G MIMO antenna system for mobile terminals," IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 427-428, Atlanta, USA, 2019.

    35. Zhao, A. and Z. Ren, "Wideband MIMO antenna systems based on coupled-loop antenna for 5G N77/N78/N79 applications in mobile terminals," IEEE Access, Vol. 7, 93761-93771, 2019.
    doi:10.1109/ACCESS.2019.2913466

    36. Li, M., Z. Xu, Y. Ban, C. Sim, and Z. Yu, "Eight-port orthogonally dual-polarized MIMO antennas using loop structures for 5G smartphone," IET Microwaves, Antennas & Propagation, Vol. 11, No. 12, 1810-1816, 2017.
    doi:10.1049/iet-map.2017.0230

    37. Huang, D., Z. Du, and Y. Wang, "Slot antenna array for fifth generation metal frame mobile phone applications," Int. Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 9, 1-9, 2019.

    38. Li, M., et al., "Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 9, 3820-3830, 2016.
    doi:10.1109/TAP.2016.2583501

    39. Li, J., X. Zhang, Z. Wang, X. Chen, J. Chen, Y. Li, and A. Zhang, "Dual-band eight-antenna array design for MIMO applications in 5G mobile terminals," IEEE Access, Vol. 7, 71636-71644, 2019.
    doi:10.1109/ACCESS.2019.2908969