Vol. 118

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-03-02

Wide-Band Directional Cavity Antenna with Low Scanning Loss for WLAN

By Somanatha Pai Swapna, Gulur Sadananda Karthikeya, Shiban Kishen Koul, and Ananjan Basu
Progress In Electromagnetics Research C, Vol. 118, 231-245, 2022
doi:10.2528/PIERC22011603

Abstract

In this paper, a wide-band cavity antenna with low scanning loss for 20% antenna bandwidth as well as having a wide 20% 1-dB gain bandwidth over the antenna beam scanning angle is proposed. The antenna operates in the 5 GHz band of IEEE 802.11 ac wireless local area network (WLAN) applications. A beam scanning of 20˚ is demonstrated by varying the height of a slider within the antenna cavity. The broadside peak gain of 9.6 dBi is maintained for 20% of the antenna bandwidth with a gain reduction of only 0.3 dB throughout its operating frequency range. Besides, the scanning loss suffered by the antenna when scanning from the broadside to the maximum scanned angle is only 0.8 dB. The proposed scan performance is verified for a single element antenna and a two-element antenna array.

Citation


Somanatha Pai Swapna, Gulur Sadananda Karthikeya, Shiban Kishen Koul, and Ananjan Basu, "Wide-Band Directional Cavity Antenna with Low Scanning Loss for WLAN," Progress In Electromagnetics Research C, Vol. 118, 231-245, 2022.
doi:10.2528/PIERC22011603
http://jpier.org/PIERC/pier.php?paper=22011603

References


    1. Karmakar, R., S. Chattopadhyay, and S. Chakraborty, "Impact of IEEE 802.11n/ac phy/mac high throughput enhancements on transport and application protocols --- A survey," IEEE Communications Surveys Tutorials, Vol. 19, No. 4, 2050-2091, 2017.
    doi:10.1109/COMST.2017.2745052

    2. Rocca, P., G. Oliveri, R. J. Mailloux, and A. Massa, "Unconventional phased array architectures and design methodologies --- A review," Proceedings of the IEEE, Vol. 104, No. 3, 544-560, 2016.
    doi:10.1109/JPROC.2015.2512389

    3. Hansen, R. C., Phased Array Antennas, 2nd Ed., Wiley, 2009.
    doi:10.1002/9780470529188

    4. Rao, S. K. and C. Ostroot, "Design principles and guidelines for phased array and reflector antennas [antenna applications corner]," IEEE Antennas and Propagation Magazine, Vol. 62, No. 2, 74-81, 2020.
    doi:10.1109/MAP.2020.2969261

    5. Chandran, A. R., S. Morris, S. Raman, N. Timmons, and J. Morrison, "Microstrip patch based switched beam antenna at 2.45 GHz for wireless sensor network applications," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 13, 1333-1341, 2017.
    doi:10.1080/09205071.2017.1348260

    6. Tian, H., L. J. Jiang, and T. Itoh, "A compact single-element pattern reconfigurable antenna with wide-angle scanning tuned by a single varactor," Progress In Electromagnetics Research C, Vol. 92, 137-150, 2019.
    doi:10.2528/PIERC19021407

    7. Razmjoo, H., H. Abiri, and A. Yahaghi, "A novel dual band patch design for electrical steerable reflectarray antennas," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 1, 35-50, 2020.
    doi:10.1080/09205071.2019.1688198

    8. Yang, J., S.-S. Qi, W. Wu, and D.-G. Fang, "A novel high-gain sum and difference conical beamscanning reflector antenna," IEEE Access, Vol. 8, 103 291-103 300, 2020.
    doi:10.1109/ACCESS.2020.2998835

    9. Ramazannia Tuloti, S. H., P. Rezaei, and F. Tavakkol Hamedani, "High-efficient wideband transmitarray antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 817-820, 2018.
    doi:10.1109/LAWP.2018.2817363

    10. Nguyen, B. D. and S. V. Tran, "Beam-steering re ectarray based on two-bit aperture-coupled reflectarray element," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 1, 54-66, 2018.
    doi:10.1080/09205071.2017.1366369

    11. Wang, H.-F., Z.-B. Wang, Z.-H. Wu, and Y.-R. Zhang, "Beam-scanning lens antenna based on elliptical paraboloid phase distribution metasurfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 8, 1562-1566, 2019.
    doi:10.1109/LAWP.2019.2922695

    12. Ghasemi, A. and J.-J. Laurin, "Beam steering in narrow-wall slotted ridge waveguide antenna using a rotating dielectric slab," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 10, 1773-1777, 2018.
    doi:10.1109/LAWP.2018.2866086

    13. Afzal, M. U. and K. P. Esselle, "Steering the beam of medium-to-high gain antennas using nearfield phase transformation," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1680-1690, 2017.
    doi:10.1109/TAP.2017.2670612

    14. Bjorgaard, J., M. Hoyack, E. Huber, M. Mirzaee, Y.-H. Chang, and S. Noghanian, "Design and fabrication of antennas using 3D printing," Progress In Electromagnetics Research C, Vol. 84, 119-134, 2018.
    doi:10.2528/PIERC18011013

    15. McKerricher, G., D. Titterington, and A. Shamim, "A fully inkjet-printed 3-D honeycomb-inspired patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 544-547, 2016.
    doi:10.1109/LAWP.2015.2457492

    16. Whittow, W. G., S. S. Bukhari, L. A. Jones, and I. L. Morrow, "Applications and future prospects for microstrip antennas using heterogeneous and complex 3-D geometry substrates," Progress In Electromagnetics Research, Vol. 144, 271-280, 2014.
    doi:10.2528/PIER13121902

    17. Lou, Q., R.-X. Wu, and Y. Tian, "A rectangular loop yagi-uda antenna by the two materials 3-D printing technology," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 11, 2017-2020, 2018.
    doi:10.1109/LAWP.2018.2868775

    18. Shin, S.-H., D. F. Alyasiri, M. D'Auria, W. J. Otter, C. W. Myant, D. Stokes, Z. Tian, N. M. Ridler, and S. Lucyszyn, "Polymer-based 3-D printed ku-band steerable phased-array antenna subsystem," IEEE Access, Vol. 7, 106 662-106 673, 2019.
    doi:10.1109/ACCESS.2019.2932431

    19. Singh, D., A. Jain, and R. P. Yadav, "Development of circular loop frequency selective surface using 3-D printing technique," Progress In Electromagnetics Research M, Vol. 90, 195-203, 2020.
    doi:10.2528/PIERM20011402

    20. He, Y., W. Tian, and L. Zhang, "A novel dual-broadband dual-polarized electrical downtilt base station antenna for 2G/3G applications," IEEE Access, Vol. 5, 15 241-15 249, 2017.
    doi:10.1109/ACCESS.2017.2720591

    21. Izzat, N. M. K. M., M. L. Zimmerman, and K. E. Linehan, Antenna, base station and power coupler, U.S. Patent 6,922,169 B2, July 26, 2005.

    22. Luk, K.-M. and Z. N. Chen, Antennas for base stations in Wireless Communications, 3rd Ed., McGraw Hill, 2009.

    23. Zhang, H. and Y.-Z. Yin, "Single-layer single-feed wideband omnidirectional microstrip antenna with rotating square patches," Progress In Electromagnetics Research Letters, Vol. 93, 27-34, 2020.
    doi:10.2528/PIERL20030301

    24. Roy, S., K. L. Baishnab, and U. Chakraborty, "Beam focusing compact wideband antenna loaded with mu-negative metamaterial for wireless LAN application," Progress In Electromagnetics Research Letters, Vol. 83, 33-44, 2018.
    doi:10.2528/PIERC18012908

    25. Ghaemi, K. and N. Behdad, "A low-profile, wideband antenna with vertically polarized directional radiation," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1093-1096, 2016.
    doi:10.1109/LAWP.2015.2493450

    26. Martinis, M., L. Bernard, K. Mahdjoubi, R. Sauleau, and S. Collardey, "Wideband antenna in cavity based on metasurfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1053-1056, 2016.
    doi:10.1109/LAWP.2015.2491609

    27. Sanchez Hernandez, D., Multiband Integrated Antennas for 4G Terminals, Artech House Inc, January 2008.

    28. Tayli, D. and M. Gustafsson, "Physical bounds for antennas above a ground plane," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1281-1284, 2016.
    doi:10.1109/LAWP.2015.2504795

    29. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, 1st Ed., Artech House, Inc., USA, 2001.

    30. Ludvig-Osipov, A., J.-M. Hannula, P. Naccachian, and B. L. G. Jonsson, "Physical limitations of phased array antennas," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 9, 5512-5523, 2021.
    doi:10.1109/TAP.2021.3069485

    31. Ghasemi, A. and J.-J. Laurin, "A continuous beam steering slotted waveguide antenna using rotating dielectric slabs," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 10, 6362-6370, 2019.
    doi:10.1109/TAP.2019.2925272

    32. Yao, Y.-L., F.-S. Zhang, and F. Zhang, "A new approach to design circularly polarized beam-steering antenna arrays without phase shift circuits," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 5, 2354-2364, 2018.
    doi:10.1109/TAP.2018.2811839

    33. Sanchez-Olivares, P., J. L. Masa-Campos, A. T. Muriel-Barrado, R. Villena-Medina, and G. M. Fernandez-Romero, "Mechanically reconfigurable linear array antenna fed by a tunable corporate waveguide network with tuning screws," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 8, 1430-1434, 2018.
    doi:10.1109/LAWP.2018.2848911