Vol. 118

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-02-19

Vernier Effect Based Temperature Sensor Revealed Ultra-Sensitivity with High-Detection Resolution

By Lashari Ghulam Abbas, Farhan Mumtaz, Yutang Dai, Rashda Parveen, and Muhammad Aqueel Ashraf
Progress In Electromagnetics Research C, Vol. 118, 147-158, 2022
doi:10.2528/PIERC21122404

Abstract

In this study, a Vernier effect based temperature sensor with ultra-sensitivity and high-resolution detection is presented. The structure of the proposed temperature sensor is based on dual cascaded Fabry-Perot interferometers (FPIs), which consists of polymer and air cavity FPIs. The polymer cavity works as the sensing part, whereas the air cavity works as the reference part. The slight difference between the Free Spectral Range (FSR) of the sensing and the reference FPIs can establish the Vernier effect, which improves the sensitivity of the cascaded FPIs structure compared to the single FPI structure. The experimental results show that the proposed structure can provide the ultra-high temperature sensitivity of 67.69 nm/˚C that is 20 times higher than the single FPI, which is 3.36 nm/˚C in the testing range of 26˚C-28˚C. In addition, the structure is simple to fabricate, compact, inexpensive, along with ultra-sensitivity and high-resolution. Therefore, the proposed sensor is a suitable choice for the applications demanding high resolution temperature detection in different fields of engineering and science.

Citation


Lashari Ghulam Abbas, Farhan Mumtaz, Yutang Dai, Rashda Parveen, and Muhammad Aqueel Ashraf, "Vernier Effect Based Temperature Sensor Revealed Ultra-Sensitivity with High-Detection Resolution," Progress In Electromagnetics Research C, Vol. 118, 147-158, 2022.
doi:10.2528/PIERC21122404
http://jpier.org/PIERC/pier.php?paper=21122404

References


    1. Mumtaz, F., et al., "A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer," IEEE Sensors Journal, Vol. 20, No. 13, 7074-7081, 2020.
    doi:10.1109/JSEN.2020.2978533

    2. Cheng, P., et al., "Refractive index interferometer based on SMF-MMF-TMCF-SMF structure with low temperature sensitivity," Optical Fiber Technology, Vol. 57, 102233, 2020.
    doi:10.1016/j.yofte.2020.102233

    3. Mumtaz, F., Y. Dai, and M. A. Ashraf, "Inter-cross de-modulated refractive index and temperature sensor by an etched Multi-core fiber of a MZI structure," Journal of Lightwave Technology, Vol. 38, No. 24, 6948-6953, 2020.
    doi:10.1109/JLT.2020.3014857

    4. Mumtaz, F., H. Lin, Y. Dai, W. Hu, M. A. Ashraf, L. G. Abbas, S. Cheng, and P. Cheng, "Simultaneous measurement of temperature and strain using multi-core fiber within-line cascaded symmetrical ellipsoidal fiber balls-based Mach-Zehnder interferometer structure," Progress In Electromagnetics Research C, Vol. 112, 21-34, 2021.
    doi:10.2528/PIERC21021002

    5. Frazao, O., et al., "Simultaneous measurement of multiparameters using a Sagnac interferometer with polarization maintaining side-hole fiber," Applied Optics, Vol. 47, No. 27, 4841-4848, 2008.
    doi:10.1364/AO.47.004841

    6. Bai, Y., Y. Miao, H. Zhang, and J. Yao, "Simultaneous measurement of temperature and relative humidity based on a micro ber sagnac loop and MoS2," Journal of Lightwave Technology, Vol. 38, No. 4, 840-845, 2020.
    doi:10.1109/JLT.2019.2947644

    7. Cao, Y., H. Zhang, Y. Miao, Z. Ma, and B. Li, "Simultaneous measurement of temperature and refractive index based on micro ber Bragg Grating in Sagnac loop," Optical Fiber Technology, Vol. 47, 147-151, 2019.
    doi:10.1016/j.yofte.2018.11.028

    8. Wang, G., Y. Lu, X. Yang, L. Duan, and J. Yao, "Square-lattice alcohol- lled photonic crystal fiber temperature sensor based on a Sagnac interferometer," Applied Optics, Vol. 58, No. 8, 2132-2136, 2019.
    doi:10.1364/AO.58.002132

    9. Liu, Y., et al., "Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure," Optics Communications, Vol. 443, 166-171, 2019.
    doi:10.1016/j.optcom.2019.03.034

    10. Liu, Y., et al., "Hollow-core fiber-based all-fiber FPI sensor for simultaneous measurement of air pressure and temperature," IEEE Sensors Journal, Vol. 19, No. 23, 11236-11241, 2019.
    doi:10.1109/JSEN.2019.2934738

    11. Nan, J., D. Zhang, X. Wen, M. Li, H. Lv, and K. Su, "Elimination of thermal strain interference in mechanical strain measurement at high temperature using an EFPI-RFBG hybrid sensor with unlimited cavity length," IEEE Sensors Journal, Vol. 20, No. 10, 5270-5276, 2020.
    doi:10.1109/JSEN.2020.2969431

    12. Abbas, L. G., F. Mumtaz, Y. Dai, A. Zhou, W. Hu, and M. A. Ashraf, "Highly sensitive polymer based Fabry-Perot interferometer for temperature sensing," Progress In Electromagnetics Research Letters, Vol. 97, 87-94, 2021.
    doi:10.2528/PIERL21030702

    13. Del Carmen Alonso-Murias, M., J. S. Velazquez-Gonzalez, and D. Monzon-Hernandez, "SPR fiber tip sensor for the simultaneous measurement of refractive index, temperature, and level of a liquid," Journal of Lightwave Technology, Vol. 37, No. 18, 4808-4814, 2019.
    doi:10.1109/JLT.2019.2921302

    14. Han, B., et al., "Simultaneous measurement of temperature and strain based on dual SPR effect in PCF," Optics Laser Technology, Vol. 113, 46-51, 2019.
    doi:10.1016/j.optlastec.2018.12.010

    15. Velazquez-Gonzalez, J. S., D. Monzon-Hernandez, D. Moreno-Hernandez, F. Martnez-Pinon, and I. Hernandez-Romano, "Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor," Sensors Actuators B: Chemical, Vol. 242, 912-920, 2017.
    doi:10.1016/j.snb.2016.09.164

    16. Zhang, R., S. Pu, and X. Li, "Gold-film-thickness dependent SPR refractive index and temperature sensing with hetero-core optical fiber structure," Sensors, Vol. 19, No. 19, 4345, 2019.
    doi:10.3390/s19194345

    17. Lu, Y., M. Wang, C. Hao, Z. Zhao, and J. Yao, "Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid," IEEE Photonics Journal, Vol. 6, No. 3, 1-7, 2014.

    18. Xu, H., M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, "Ultra-sensitive chip- based photonic temperature sensor using ring resonator structures," Optics Express, Vol. 22, No. 3, 3098-3104, 2014.
    doi:10.1364/OE.22.003098

    19. Yu, J., S. Xu, Y. Jiang, H. Chen, and W. Feng, "Multi-parameter sensor based on the fiber Bragg grating combined with triangular-lattice four-core fiber," Optik, Vol. 208, 164094, 2020.
    doi:10.1016/j.ijleo.2019.164094

    20. Yan, L. S., A. Yi, W. Pan, and B. Luo, "A simple demodulation method for FBG temperature sensors using a narrow band wavelength tunable DFB laser," IEEE Photonics Technology Letters, Vol. 22, No. 18, 1391-1393, 2010.
    doi:10.1109/LPT.2010.2060478

    21. Rao, Y.-J., "In-fibre Bragg grating sensors," Measurement Science Technology, Vol. 8, No. 4, 355, 1997.
    doi:10.1088/0957-0233/8/4/002

    22. Zheng, Z.-M., Y.-S. Yu, X.-Y. Zhang, Q. Guo, and H.-B. Sun, "Femtosecond laser inscribed small- period long-period fiber gratings with dual-parameter sensing," IEEE Sensors Journal, Vol. 18, No. 3, 1100-1103, 2017.
    doi:10.1109/JSEN.2017.2761794

    23. Cao, X., D. Tian, Y. Liu, L. Zhang, and T. Wang, "Sensing characteristics of helical long-period gratings written in the double-clad fiber by CO2 laser," IEEE Sensors Journal, Vol. 18, No. 18, 7481-7485, 2018.
    doi:10.1109/JSEN.2018.2855038

    24. Zhang, A. P., L.-Y. Shao, J.-F. Ding, and S. L. He, "Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature," IEEE Photonics Technology Letters, Vol. 17, No. 11, 2397-2399, 2005.
    doi:10.1109/LPT.2005.857621

    25. Zhou, J., et al., "Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer," Optics Express, Vol. 22, No. 2, 1680-1686, 2014.
    doi:10.1364/OE.22.001680

    26. Jiang, L., J. Yang, S. Wang, B. Li, and M. Wang, "Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity," Optics Letters, Vol. 36, No. 19, 3753-3755, 2011.
    doi:10.1364/OL.36.003753

    27. Alawsi, S. M. K. and M. A. Jabbar, "Refractive index and temperature sensor using HC-1550 infiltrating by different liquid crystal," Optics Photonics Journal, Vol. 8, No. 3, 29-39, 2018.
    doi:10.4236/opj.2018.83004

    28. Zhou, Y., et al., "Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating," Optics Communications, Vol. 284, No. 24, 5669-5672, 2011.
    doi:10.1016/j.optcom.2011.08.048

    29. Wang, F., K. Pang, T. Ma, X. Wang, Y. J. O. Liu, and L. Technology, "Folded-tapered multimode- no-core fiber sensor for simultaneous measurement of refractive index and temperature," Optics Laser Technology, Vol. 130, 106333, 2020.
    doi:10.1016/j.optlastec.2020.106333

    30. Zhang, P., et al., "Simpli ed hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement," IEEE Photonics Journal, Vol. 7, No. 1, 1-10, 2015.

    31. Tian, J., Y. Jiao, S. Ji, X. Dong, and Y. Yao, "Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation," Optics Communications, Vol. 412, 121-126, 2018.
    doi:10.1016/j.optcom.2017.12.005

    32. Shao, L.-Y., et al., "Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect," Optics Communications, Vol. 336, 73-76, 2015.
    doi:10.1016/j.optcom.2014.09.075

    33. Wang, G., B. Liao, Y. Cao, X. Feng, B.-O. Guan, and J. Yao, "Microwave photonic interrogation of a high-speed and high-resolution temperature sensor based on cascaded fiber-optic sagnac loops," Journal of Lightwave Technology, Vol. PP, No. 99, 1-1, 2020.

    34. Yang, Y., et al., "Sensitivity-enhanced temperature sensor by hybrid cascaded configuration of a Sagnac loop and a FP cavity," Optics Express, Vol. 25, No. 26, 33290-33296, 2017.
    doi:10.1364/OE.25.033290

    35. Wang, Z., L. Huang, C. Liu, H.Wang, S. Sun, and D. Yang, "Sensitivity-enhanced fiber temperature sensor based on vernier effect and dual in-line mach-zehnder interferometers," IEEE Sensors Journal, Vol. 19, No. 18, 7983-7987, 2019.
    doi:10.1109/JSEN.2019.2916891

    36. Liao, H., et al., "Sensitivity ampli cation of fiber-optic in-line Mach-Zehnder Interferometer sensors with modified Vernier-effect," Optics Express, Vol. 25, No. 22, 26898-26909, 2017.
    doi:10.1364/OE.25.026898

    37. Abbas, L. G. and H. Li, "Temperature sensing by hybrid interferometer based on Vernier like effect," Optical Fiber Technology, Vol. 64, 102538, 2021.
    doi:10.1016/j.yofte.2021.102538

    38. Tan, X., Y. Geng, X. Li, Y. Deng, Z. Yin, and R. Gao, "UV-curable polymer microhemisphere-based fiber-optic Fabry-Perot interferometer for simultaneous measurement of refractive index and temperature," IEEE Photonics Journal, Vol. 6, No. 4, 1-8, 2014.
    doi:10.1109/JPHOT.2014.2332460

    39. Cao, K., Y. Liu, and S. Qu, "Compact fiber biocompatible temperature sensor based on a hermetically-sealed liquid- lling structure," Optics Express, Vol. 25, No. 24, 29597-29604, 2017.
    doi:10.1364/OE.25.029597